EXISTENCE AND UNIQUENESS OF SOLUTION FOR
SPECIAL NONLOCAL DIFFUSION MODEL
WITH NONLINEAR FLUX
Cesar A. Gómez1, Mauricio Bogoya2 1Department of Mathematics
Universidad Nacional de Colombia
Bogotá, COLOMBIA 2Department of Mathematics
Universidad Nacional de Colombia
Bogotá, COLOMBIA
Abstract. Using the Banach Fixed Point Theorem, we show the existence and uniqueness of solution for the following nonlocal diffusion problem with Neumann conditions
in which, we consider for the boundary conditions the border of a special domain
, instead of the complement used previously by other authors. With this, we show the calculations are reduced in a satisfactory way and therefore, we have a new model which is a complement of a previous work where the authors use a linear flux. In this new model, the flux in the border is considered as no lineal. Finally, a comparison principle is considered.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, J. J. Toledo-Melero, Nonlocal Diffusion Problems, American Mathematical Society, Mathematical
Surveys and Monographs, 165, 2010.
[2] F. Andreu, J. M. Mazón, J. D. Rossi, J. Toledo, The Neumann problem
for nonlocal nonlinear diffusion equations, J. Evol. Equ., 8, No 1 (2008),
189-215.
[3] F. Andreu, J. M. Mazón, J. D. Rossi, J. Toledo, A nonlocal p−Laplacian
evolution equation with Neumann boundary conditions, J. Math. Pures
Appl., 90, No 2 (2008), 201-227.
[4] F. Andreu, J. M. Mazón, J. D. Rossi, J. Toledo, A nonlocal p−Laplacian
evolution equation with non homogeneous Dirichlet boundary conditions,
SIAM J. Math. Anal., 40, No 5 (2009), 1815-1851.
[5] F. Andreu, J. M. Mazon, J. D. Rossi, J. Toledo, The limit as p → ∞ in
a nonlocal p−Laplacian evolution equation: A nonlocal approximation of
a model for sandpiles, Calc. Var. Partial Differential Equations, 35, No 3
(2009), 279-316.
[6] P. Bates, On some nonlocal evolution equations arising in materials science,
In: Nonlinear Dynamics and Evolution Equations: Fields Inst. Commun.,
48, Amer. Math. Soc., Providence, RI (2006), 13-52.
[7] P. Bates, G. Zhao, Existence, uniqueness and stability of the stationary
solution to a nonlocal evolution equation arising in population dispersal,
J. Math. Anal. Appl., 332 (2007), 428-440.
[8] M.Bogoya, R. Ferreira, J.D. Rossi, Neumann boundary conditions for a
nonlocal nonlinear diffusion operator: Continuous and discrete models, In:
Proc. Amer. Math. Soc., 135 (2007), 3837-3846.
[9] C. Carrillo, P. Fife, Spatial effects in discrete generation population models.
J. Math. Biol., 50, No 2 (2005), 161-188.
[10] E. Chasseigne, The Dirichlet problem for some nonlocal diffusion equations, Differential Integral Equations, 20 (2007), 1389-1404.
[11] C. Cortázar, M. Elgueta, S. Martı́nez, J. D. Rossi, Random walks and the
porous medium equation, Rev. Union Matemática Argentina, 50 (2009),
149-155.
[12] C. Cortázar, M. Elgueta, J. D. Rossi, Nonlocal diffusion problems that
approximate the heat equation with Dirichlet boundary conditions, Israel
J. Math., 170 (2009), 53-60.
[13] C. Cortázar, M. Elgueta, J.D. Rossi, N. Wolanski, How to aproximate the
heat equation with Neumann boundary conditions by nonlocal diffusion
problems, Arch. Rat. Mech. Anal., 187, No 1 (2008), 137-156.
[14] C. Cortázar, M. Elgueta, J.D. Rossi, N. Wolanski, Boundary fluxes for
nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.
[15] J. Coville, Maximum principles, sliding techniques and applications to nonlocal equations, Electron. J. Differential Equations, 68 (2007), 1-23.
[16] J. Coville, J. Dávila, S. Martı́nez, Existence and uniqueness of solutions to
a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal.,
39 (2008), 1693-1709.
[17] J. Coville, L. Dupaigne, On a nonlocal equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1-29.
[18] P. Fife, Some nonclassical trends in parabolic and paraboli-like evolutions.
In: Trends in Nonlinear Analysis, Springer, Berlin (2003), 153-191.
[19] N. Fournier, P. Laurencot, Well-posedness of Smoluchowski’s coagulation
equation for a class of homogeneous kernels, J. Funct. Anal., 233 (2006),
351-379.
[20] C. Gómez, M. Bogoya, On a nonlocal diffusion model with Neumann
boundary conditions, Nonlinear Analysis, 75 (2012), 3198-3209.
[21] C. Gómez, J. Caicedo, On a rescaled nonlocal diffusion problem with Neumann boundary conditions, Adv. Math: Sci. J., 8, No 10 (2021), 3013-3022.
[22] C. Gómez, J. Rossi, A nonlocal diffusion problem that aproximates the
heat equation with Neumann boundary conditions, Journal of King Saud
University, 32 (2020), 17-20.
[23] L. I. Ignat, J. D. Rossi, A nonlocal convection-diffusion equation, J. Funct.
Anal., 251, No 2 (2007), 399-437.
[24] M. Perez, J.D. Rossi, Blow-up for a non-local diffusion problem with neumann boundary conditions and a reaction term, Analysis TM&A, 70, No
4 (2009), 1629-1640.