EXISTENCE AND UNIQUENESS OF SOLUTION FOR
SPECIAL NONLOCAL DIFFUSION MODEL
WITH NONLINEAR FLUX

Abstract


Abstract. Using the Banach Fixed Point Theorem, we show the existence and uniqueness of solution for the following nonlocal diffusion problem with Neumann conditions

\begin{displaymath}
\begin{cases}
\displaystyle u_t(x,t)=(J*u(x,t))-u(x,t)
+\dis...
...=u_0(x), \,\,\,\,\,\,\,\,\,\,x\in\overline{\Omega},
\end{cases}\end{displaymath}

in which, we consider for the boundary conditions the border of a special domain $\partial\Omega\subseteq\mathbb{R^N}$, instead of the complement used previously by other authors. With this, we show the calculations are reduced in a satisfactory way and therefore, we have a new model which is a complement of a previous work where the authors use a linear flux. In this new model, the flux in the border is considered as no lineal. Finally, a comparison principle is considered.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 5
Year: 2023

DOI: 10.12732/ijam.v36i5.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, J. J. Toledo-Melero, Nonlocal Diffusion Problems, American Mathematical Society, Mathematical Surveys and Monographs, 165, 2010.
  2. [2] F. Andreu, J. M. Mazón, J. D. Rossi, J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations, J. Evol. Equ., 8, No 1 (2008), 189-215.
  3. [3] F. Andreu, J. M. Mazón, J. D. Rossi, J. Toledo, A nonlocal p−Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl., 90, No 2 (2008), 201-227.
  4. [4] F. Andreu, J. M. Mazón, J. D. Rossi, J. Toledo, A nonlocal p−Laplacian evolution equation with non homogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40, No 5 (2009), 1815-1851.
  5. [5] F. Andreu, J. M. Mazon, J. D. Rossi, J. Toledo, The limit as p → ∞ in a nonlocal p−Laplacian evolution equation: A nonlocal approximation of a model for sandpiles, Calc. Var. Partial Differential Equations, 35, No 3 (2009), 279-316.
  6. [6] P. Bates, On some nonlocal evolution equations arising in materials science, In: Nonlinear Dynamics and Evolution Equations: Fields Inst. Commun., 48, Amer. Math. Soc., Providence, RI (2006), 13-52.
  7. [7] P. Bates, G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.
  8. [8] M.Bogoya, R. Ferreira, J.D. Rossi, Neumann boundary conditions for a nonlocal nonlinear diffusion operator: Continuous and discrete models, In: Proc. Amer. Math. Soc., 135 (2007), 3837-3846.
  9. [9] C. Carrillo, P. Fife, Spatial effects in discrete generation population models. J. Math. Biol., 50, No 2 (2005), 161-188.
  10. [10] E. Chasseigne, The Dirichlet problem for some nonlocal diffusion equations, Differential Integral Equations, 20 (2007), 1389-1404.
  11. [11] C. Cortázar, M. Elgueta, S. Martı́nez, J. D. Rossi, Random walks and the porous medium equation, Rev. Union Matemática Argentina, 50 (2009), 149-155.
  12. [12] C. Cortázar, M. Elgueta, J. D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Israel J. Math., 170 (2009), 53-60.
  13. [13] C. Cortázar, M. Elgueta, J.D. Rossi, N. Wolanski, How to aproximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rat. Mech. Anal., 187, No 1 (2008), 137-156.
  14. [14] C. Cortázar, M. Elgueta, J.D. Rossi, N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.
  15. [15] J. Coville, Maximum principles, sliding techniques and applications to nonlocal equations, Electron. J. Differential Equations, 68 (2007), 1-23.
  16. [16] J. Coville, J. Dávila, S. Martı́nez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709.
  17. [17] J. Coville, L. Dupaigne, On a nonlocal equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1-29.
  18. [18] P. Fife, Some nonclassical trends in parabolic and paraboli-like evolutions. In: Trends in Nonlinear Analysis, Springer, Berlin (2003), 153-191.
  19. [19] N. Fournier, P. Laurencot, Well-posedness of Smoluchowski’s coagulation equation for a class of homogeneous kernels, J. Funct. Anal., 233 (2006), 351-379.
  20. [20] C. Gómez, M. Bogoya, On a nonlocal diffusion model with Neumann boundary conditions, Nonlinear Analysis, 75 (2012), 3198-3209.
  21. [21] C. Gómez, J. Caicedo, On a rescaled nonlocal diffusion problem with Neumann boundary conditions, Adv. Math: Sci. J., 8, No 10 (2021), 3013-3022.
  22. [22] C. Gómez, J. Rossi, A nonlocal diffusion problem that aproximates the heat equation with Neumann boundary conditions, Journal of King Saud University, 32 (2020), 17-20.
  23. [23] L. I. Ignat, J. D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal., 251, No 2 (2007), 399-437.
  24. [24] M. Perez, J.D. Rossi, Blow-up for a non-local diffusion problem with neumann boundary conditions and a reaction term, Analysis TM&A, 70, No 4 (2009), 1629-1640.