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Abstract: Using the Banach Fixed Point Theorem, we show the existence
and uniqueness of solution for the following nonlocal diffusion problem with
Neumann conditions























ut(x, t) = (J ∗ u(x, t))− u(x, t) +

∫

∂Ω
G(x− y)g(u(y, t))dSy

(x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

in which, we consider for the boundary conditions the border of a special domain
∂Ω ⊆ R

N, instead of the complement used previously by other authors. With
this, we show the calculations are reduced in a satisfactory way and therefore, we
have a new model which is a complement of a previous work where the authors
use a linear flux. In this new model, the flux in the border is considered as no
lineal. Finally, a comparison principle is considered.

AMS Subject Classification: 45A05, 45J05, 35K05
Key Words: nonlocal diffusion model; nonlinear flux; Neumann boundary
conditions; Banach fixed point theorem; comparison principle

Received: January 28, 2023 © 2023 Academic Publications
§Correspondence author
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1. Introduction

The classical (local) diffusion model is represented by the semilineal equation

ut = △u, (1)

where u is the density function. In [18], the author obtain an analogous nonlocal
of (1) described as

ut = J ∗ u− u, (2)

where ∗ is the convolution between J and u, and J is a symmetric (J(x) =
J(−x)) and positive function which satisfies

∫

J(x)dx = 1. Thinking as in
[18], if u(x, t) is the density function at point x in the time t, and if J(x − y)
represent the probability distribution of jump from y to x, then (J ∗ u)(x, t)
is the rate at which the individuals arrive to x from all other places y and
−u(x, t) = −

∫

RN J(x − y)u(x, t)dy is the rate at which the individuals travel
from x to all other places y. In absence of external forces, the density u satisfies
Eq. (2), which is called as nonlocal diffusion equation.

Many diffusion processes have been modeled by equations of the form (2),
and variants of these. Analytic studies for this class of models have been made
recently, see for instance the references [6], [9], [17], [19], [1],[2], [3],[4],[5],[7],
[8], [10],[11], [12], [13], [14],[15], [16], [23], [24].

The authors in [20] have studied the problem















ut(x, t) =

∫

Ω
J(x− y)(u(y, t) − u(x, t))dy +

∫

∂Ω
G(x− y)g(y, t)dSy ,

u(x, 0) = u0(x),

(x, t) ∈ Ω× (0, T ),

(3)

considered as analogues of the local problem ([22])


















ut(x, t)−△u(x, t) = 0 (x, t) ∈ Ω× (0, T ),
∂u(x, t)

∂η
= g(x, t) (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω.

(4)

In (3), Ω ⊆ R
N is a bounded, connected and smooth domain, J : RN → R

is a nonnegative, bounded, smooth and symmetric function J(z) = J(−z),
supported in the unit ball such that

∫

RN

J(z)dz = 1,
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G(x) with the same characteristics of J , the initial datum u0(x), non negative
and g(y, t), a regular function. In this model, the individuals only can jump in
Ω (the individuals may not enter or leave Ω) this fact is determined in the firs
integral. On the frontier of Ω the number of individuals that can enter (if g is
positive), is determined by G(x− y)g(x, y). This fact is called in the literature
as homogeneous Neumann boundary conditions for nonlocal problems. The
authors have showed existence and uniqueness of solution for the model, and
they have studied a comparison principle as well as the asymptotic behavior of
the solutions. In [21], the authors have studied the following family of nonlocal
models























uǫt(x, t) =
1

ǫ2

∫

Ω
Jǫ(x− y)(uǫ(y, t)− uǫ(x, t))dy

+
1

ǫ

∫

∂Ω
Gǫ(x− y)g(y, t)dSy ,

uǫ(x, 0) = u0(x),

(5)

where

Jǫ(z) = C1
1

ǫN
J(

z

ǫ
), Gǫ(x) = C1

1

ǫN
G(

x

ǫ
),

C1 a normalization constant. Here, J,G are the kernels given in Eq. (3). For
this problem, they have used the Banach Fixed Point Theorem to show that,
for each ǫ > 0, there exist an one unique solution. The author in [22], showed
that the solutions uǫ of (5), converges to solution of Eq.(4), as the parameter
ǫ go to zero, in the sense of the convergence weak∗. Is a relevant fact that
the solutions of local problems can be approximate by means of solutions of
nonlocal problems.

The main objective of this work is the study of the nonlocal model with
nonlinear flux























ut(x, t) = (J ∗ u(x, t))− u(x, t)

+

∫

∂Ω
G(x− y)g(u(y, t))dSy , (x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω.

(6)

As was mentioned previously, Ω is a connected and bounded domain of RN

with smooth frontier. J ∗ u− u the nonlocal diffusion operator with J ∗ u(x, t)
the classical convolution

(J ∗ u(x, t)) =

∫

RN

J(x− y)u(y, t)dy.

Additionally, we consider the function g, to satisfy the following two conditions:
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1. (C1): g : R −→ [0,∞) a Lipchitz function with Lipchitz constant kg,
increasing and convex function.

2. (C2):

∫ ∞ 1

g(s)
ds < ∞.

The initial datum u0(x) ∈ C1(Ω) nonnegative,

J,G : RN → R
N ,

are functions in C1(Ω), supported in the unit ball B1(x) of R
N , and positive in

B1, radially symmetric

J(−x) = J(x), G(−x) = G(x),

∫

RN

J(x)dx = 1,

∫

RN

G(x)dx = 1,

and strictly decreasing. The interpretation of the model (6), is similar to those
given for (3). In this case, the individuals that enter from ∂Ω is determined by

∫

∂Ω
G(x− y)g(u(y, t))dSy , g(s) > 0.

As a solution of (6), we will consider a function u ∈ C[Ω× [0, t0]] satisfying
(6) c.t.p.

In this sense, first, we prove existence and uniqueness of solutions for (6),
and after, we will give a comparison principle.

2. Existence and uniqueness of solution

We will use the Banach fixed point theorem to show the existence and unique-
ness of solution for Eq.(6). With this in mind, we fixed t0 > 0, and use the
Banach space given by

Xt0 = C([0, t0];C(Ω)) = C([0, t0]× Ω),

with the norm

|||w||| = max
0≤t≤t0

||w(·, t)||∞ = max
0≤t≤t0

max
x∈Ω

|w(x, t)| = max
(x,t)∈Ω×[0,t0]

|w(x, t)|.
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Using w instead of u, and s intead of t, in (6), we have

ws(x, s) =

∫

Ω
J(x− y)[w(y, s) − w(x, s)]dy +

∫

∂Ω
G(x− y)g(w(y, s))dSy . (7)

After integration of (7), from 0 to t, we obtained

w(x, t) = w0(x) +

∫ t

0

∫

Ω
J(x− y)[w(y, s) − w(x, s)] dy ds

+

∫ t

0

∫

∂Ω
G(x− y)g(w(y, s)) dSy ds.

(8)

We define D : Xt0 −→ Xt0 as

Dw0,g(w(x, t)) = w0(x) +

∫ t

0

∫

Ω
J(x− y)[w(y, s)− w(x, s)] dy ds

+

∫ t

0

∫

∂Ω
G(x− y)g(w(y, s)) dSy ds.

(9)

With respect to D, we can enunciate the following lemma:

Lemma 1. The operator Dw0,g in (9) is well defined.

Proof. Let 0 < t1 < t2 ≤ t0, w ∈ Xt0 , ||J ||∞ = K1, and ||G||∞ = K2. Then
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we have:

∣

∣

∣

∣

Dw0,g[w(x, t1)]−Dw0,g[w(x, t2)]

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t2

t1

∫

Ω
J(x− y)[w(y, s)− w(x, s)]dyds

+

∫ t2

t1

∫

∂Ω
G(x− y)g(w(y, s))dSyds

∣

∣

∣

∣

≤

∫ t2

t1

∫

Ω
|J(x− y)||w(y, s) − w(x, s)|dyds

+

∫ t2

t1

∫

∂Ω
|G(x− y)||g(w(y, s))|dyds

≤ (t2 − t1)K1|Ω| |||w(y, s) − w(x, s)|||

+(t2 − t1)K2

≤

∫

∂Ω
|g(w(y, s))|dSy

≤ (t2 − t1)max{1,K1|Ω|,K2|∂Ω|}

{

2|||w||| + ||g||∞

}

.

With the previous estimates, Dw0,g is continuous in t ∈ (0, t0]. The conti-
nuity for the case t = 0, can be obtained from the following calculations:

∣

∣

∣

∣

Dw0,g[w(x, t)] − w0(x)]

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

∫

Ω
J(x− y)[w(y, s)− w(x, s)]dyds

+

∫ t

0

∫

∂Ω
G(x− y)g(w(y, s))dSyds

∣

∣

∣

∣

≤ (t)max{1,K1|Ω|,K2|∂Ω|}

{

2|||w||| + ||g||∞

}

.

Therefore, we have continuity in t ∈ [0, t0]. Clearly, as function of variable x,
the operator is continuous, due to J is uniformly continuous ([20]).

Theorem 2. For all u0 ∈ C(Ω), there exists a one unique solution u ∈
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C[[0,∞);C(Ω)] of the problem (6). Moreover, the total mass in Ω satisfies

∫

Ω
u(y, t)dy =

∫

Ω
u0(y)dy +

∫ t

0

∫

Ω

∫

∂Ω
G(x− y)g(u(y, s))dSy dx ds. (10)

Proof. Let

Dw0,g(w(x, t)) = w0(x) +

∫ t

0

∫

Ω
J(x− y)[w(y, s)− w(x, s)] dy ds

+

∫ t

0

∫

∂Ω
G(x− y)g(w(y, s)) dSy ds,

and

Dw0,g(z(x, t)) = w0(x) +

∫ t

0

∫

Ω
J(x− y)[z(y, s) − z(x, s)] dy ds

+

∫ t

0

∫

∂Ω
G(x− y)g(z(y, s)) dSy ds,

then
∣

∣

∣

∣

Dw0,g[w(x, t)] −Dw0,g[z(x, t)]

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

0

∫

Ω
J(x− y)[w(y, s) − z(y, s)] dy ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

∫

Ω
J(x− y)[w(x, s)− z(x, s)] dy ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

∫

∂Ω
G(x− y)[g(w(y, s)) − g(z(y, s))] dSy ds

∣

∣

∣

∣

≤ t0C1||w − z||∞ + t0C2||w − z||∞ + t0C3||w − z||∞

≤ Ct0||w − z||∞,

(11)

where C1 = C2 = K1|Ω|, C3 = K2|∂Ω|kg y C = max{C1, C3}. We have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Dw0,g[w(x, t)] −Dw0,g[z(x, t)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Ct0|||w − z|||.

If we take t0C ≤
1

2
, by the Banach Fixed Point Theorem, we conclude the

result.
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Finally, if u is a solution of (6), using w instead of u in (8), we have

u(x, t)− u0(x) =

∫ t

0

∫

Ω
J(x− y)[u(y, s)− u(x, s)]dy ds

+

∫ t

0

∫

∂Ω
G(x− y)g(u(y, s))dSy ds.

(12)

After integration of (12) respect to x, we obtain

∫

Ω u(x, t)dx −

∫

Ω
u0(x)dx =

∫

Ω

∫ t

0

∫

Ω
J(x− y)u(y, s)dy ds dx

−

∫

Ω

∫ t

0

∫

Ω
J(x− y)u(x, s)dy ds dx

+

∫ t

0

∫

Ω

∫

∂Ω
G(x− y)g(u(y, s))dSy ds dx,

from which
∫

Ω
u(x, t)dx−

∫

Ω
u0(x)dx =

∫ t

0

∫

Ω

∫

∂Ω
G(x− y)g(u(y, s))dSy dx ds, (13)

obtaining in this way (10).

We have the following corollary.

Corollary 3. Let u, w be solutions of (6), with initial data u0 ∈ C(Ω),
w0 ∈ C(Ω and with boundary condition g. Then, for all t0 > 0, such that
Ct0 ≤

1
2 , being C as in the previous theorem, there exists C̃ (depending on t0)

such that

max
0≤t≤t0

||u(·, t) − w(·, t)||∞ ≤ C̃||u(·, 0) − w(·, 0)||∞.

Proof. We have

u(x, t) = u0(x) +

∫ t

0

∫

Ω
J(x− y)[u(y, s)− u(x, s)]dy ds

+

∫ t

0

∫

∂Ω
G(x− y)g(u(y, s))dSy ds,

and

w(x, t) = w0(x) +

∫ t

0

∫

Ω
J(x− y)[w(y, s) − w(x, s)]dy ds

+

∫ t

0

∫

∂Ω
G(x− y)g(w(y, s))dSy ds.
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Proceeding as in Theorem 2, we obtain

|u(x, t) − w(x, t)| ≤ ||u0(x, 0)− w0(x, 0)||∞ + Ct0|u− w|.

We can conclude

(1−Ct0)|u(·, t) − w(·, t)| ≤ ||u(·, 0) − w(·, 0)||∞,

and taking C̃ = 1
1−Ct0

, the result is obtained.

Corollary 4. Let u ∈ Xt0 . Then, u is solution of (6), if and only if

u(x, t) = e−A(x)tu0(x) +

∫ t

0

∫

Ω
e−A(x)(t−s)J(x− y)u(y, s)dy ds

+

∫ t

0

∫

∂Ω
e−A(x)(t−s)G(x− y)g(u(y, s))dSy ds,

(14)

with

A(x) =

∫

Ω
J(x− y)dy.

Proof. Using u instead of w in (7), we have

us(x, s)= |1

∫

Ω
J(x− y)[u(y, s)− u(x, s)]dy +

∫

∂Ω
G(x− y)g(u(y, s))dSy .

Multiplying both sides of previous equation by eA(x)s, we have

us(x, s)e
A(x)s +

∫

Ω
eA(x)sJ(x− y)u(x, s)dy

=

∫

Ω
eA(x)sJ(x− y)u(y, s)dy +

∫

∂Ω
eA(x)sG(x− y)g(u(y, s))dSy .

In a similar way,

d
ds
(u(x, s)eA(x)s) =

∫

Ω
eA(x)sJ(x− y)[u(y, s)dy

+

∫

∂Ω
eA(x)sG(x− y)g(u(y, s))dSy .

Integrating this last equation from 0 to t, we have

u(x, t)eA(x)t − u0(x) =

∫ t

0

∫

Ω
eA(x)sJ(x− y)[u(y, s)dy ds

+

∫ t

0

∫

∂Ω
eA(x)sG(x− y)g(u(y, s))dSy ds,
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from which we obtain (14).

Remark 5. Note that from conditions on J , there exists a constant α

such that A(x) ≥ α > 0, for each x ∈ Ω.

Remark 6. (With respect to local existence and uniqueness). We consider
(6), and g, Lipchitz locally and u0 ∈ C(Ω). Then, for any t1 > 0, there exists
one unique solution u(x, t) ∈ C(Ω× [0, t1]).

In fact, consider

M = ||u0||L∞ + r,

r > 0, and g Lipchitz on [−M,M ]. Let g̃ the extension of g to all R, in a such
way that g̃, continue being Lipchitz on R. We consider the problem















ut(x, t) = (J(x) ∗ u(x, t)) − u(x, t) +

∫

∂Ω
G(x− y)g̃(u(x, t))dSy ,

(x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω.

As in Theorem 2, there exists one unique solution ũ(x, t) ∈ C(Ω × [0, t0]) of
that problem (ũ(x, 0) = u0(x)). Additionally

−M ≤ |||ũ(x, t)||| ≤ M,

for t ∈ [0, t1], any t1 < t0. Furthermore,

g̃(ũ) = g(ũ)

for (x, t) ∈ Ω × [0, t1]. Therefore, taking u = ũ, we have the solution of the
initial problem. The uniqueness is obtained from the respective uniqueness of
ũ.

Under regularity of the kernels and the initial datum, we can obtain solu-
tions with more regularity. We can enunciate this fact in the following corollary
which proof depends on Corollary 4, and equation (14), and we omit here:

Corollary 7. 1. If u ∈ C[Ω × (0, T )], u0 ∈ Ck(Ω), with 0 ≤ k ≤ ∞,
g ∈ L∞(R), y J,G ∈ W k,1(RN ), then u(·, t) ∈ Ck(Ω× [0, T ]).

2. If J,G ∈ L∞(RN ), u0 ∈ C∞(Ω) y g ∈ L∞(R), then u ∈ L∞[Ω× (0, T )].
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We finish this work with following comparison principle:

Corollary 8. Let u, v be solutions of (6), with initial datums u0, v0 ∈
C1(Ω), and boundary condition g (increasing) respectively. Suppose that u0 >
v0. Then u > v c.t.p.

Proof. By Corollary 4, we have

u(x, t) = e−A(x)tu0(x) +

∫ t

0

∫

Ω
e−A(x)(t−s)J(x− y)u(y, s)dy ds

+

∫ t

0

∫

∂Ω
e−A(x)(t−s)G(x− y)g(u(y, s))dSy ds,

and

v(x, t) = e−A(x)tv0(x) +

∫ t

0

∫

Ω
e−A(x)(t−s)J(x− y)v(y, s)dy ds

+

∫ t

0

∫

∂Ω
e−A(x)(t−s)G(x− y)g(v(y, s))dSy ds.

Let w(x, t) = u(x, t) − v(x, t). Therefore w(x, 0) = u(x, 0) − v(x, 0) =
u0 − v0 = w0 > 0. In the case that the enunciate was false, there exists x̃ and
t̃, such that w(x̃, t̃) = 0 and w(y, s) > 0 for (y, s) ∈ Ω× [0, t̃). Then,

0 = w(x̃, t̃) = e−A(x)tw0(x)

+

∫ t̃

0

∫

Ω
e−A(x̃)(t̃−s)J(x̃− y)w(y, s)dy ds

+

∫ t̃

0

∫

∂Ω
e−A(x̃)(t̃−s)G(x̃− y)g′(ξ)(w(y, s))dSy ds

> 0,

which is a contradiction. So that, must be w > 0, for all (x, t) ∈ Ω× [0, t0).

3. Conclusions

We have used the Banach Fixed Point Theorem for proved existence and unique-
ness of solutions for a nonlocal problem with nonlinear flux. The work, is com-
plementary to results presented in the reference [20], where we have used a
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linear flux. Comparing our results with those obtained by other authors [14],
clearly we have obtained a reduction in all calculations, using ∂Ω, instead of
R
N − Ω. The importance of the obtained results here, consist on the fact that

several types of model as we have mentioned here, have very similarity with
respective local problems, and as we have showed in [22], solutions of this last
models, can be approximate using solutions of adequate nonlocal problems. In
the references, we can found a variety of problems, which can be improved using
the frontier used in our work.
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