Consider
, the matrix ring of order over the field . In this paper, we deduce a relation to find the number of zero divisors in matrix ring
. We prove that zero divisor graph of
is a regular directed graph. We also prove that the diameter of zero divisor graph of
is 2.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J.
Algebra, 320 (2008), 2706-2719.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[3] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
[4] I. Boˇzi´c and Z. Petrovi´c, Zero-divisor graphs of matrices over commutative
rings, Comm. Algebra, 37 (2009), 1186-1192.
[5] J. Warfel, Zero-divisor graphs for direct products of commutative rings,
Wabash College Technical Reports, 2 (2004).
[6] L. Birch, J. Thibodeaux and R. Tucci, Zero divisor graphs of finite direct
products of finite rings, Comm. Algebra, 42 (2014), 3852-3860.
[7] M. Axtell and J. Stickles, Zero-divisor graph of idealizations,J. Pure Appl.
Algebra, 204 (2006), 235-243.
[8] S. Akbari and A. Mohammadian, On the zero-divisor graph of noncommutative ring, J. Algebra, 296 (2006), 462-479.
[9] R. Farooq and M. A. Malik, On some eccentricity based topological indices of nanostar dendrimers, Optoelectronics and Advanced MaterialsRapid Communications, 9 (2015), 842-849.
[10] P. A. Krylov, A. V. Mikhalev and A. A. Tuganbaev, Endomorphism ring
of abelian groups. J. Math. Sci., 110 (2002), 2683-2745.
[11] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Internat.
J. Commutative Rings, 1 (2002), 203-211.
[12] S. P. Redmond Structure in the zero-divisor graph of a non-commutative
ring, Houston J. Math., 30 (2004), 345-355.
[13] S. Safaeeyan, E. Momtahan and M. Baziar, A generalization of the zerodivisor graph for modules, J. Korean Math. Soc., 51 (2014), 87-98.
[14] V. Sharma, R. Goswami, and A. K. Madan, Eccentric connectivity index:
a novel highly discriminating topological descriptor for structure-property
and structure-activity studies, J. Chem. Inf. Comp. Sci., 37 (1997), 273-
282.
[15] P. Singh, and V. K. Bhat, Zero-divisor graphs of finite commutative rings:
A survey, Surv. Math. its Appl., 15 (2020), 371-397.
[16] P. Singh, and V. K. Bhat, Adjacency matrix and wiener index of zero
divisor graph (Zn), J. Appl. Math. Comput., 66 (2021), 717-732; doi:
10.1007/s12190-020-01460-2.
[17] P. Singh, and V. K. Bhat, Graph invariants of the line graph of zero divisor
graph of Zn,J. Appl. Math. Comput.; doi: 10.1007/s12190-021-01567-0.
[18] X. Ma, D. Wang and J. Zhou, Automorphisms of the zero-divisor graph
over 2 × 2, J. Korean Math. Soc., 53 (2016), 519-532.