Usually, one considers models where the state process and the observation process are perturbed by Gaussian noise. When these perturbations are known to exhibit extreme behaviour, as seen frequently in application from finance or environmental studies, a model relying on the Gaussian distribution is not appropriate. A suitable alternative could be a model based on a heavy-tailed distribution, as the stable distribution. In such a model, these perturbations are allowed to have extreme values with a probability which is significantly higher than in a Gaussian-based model.
In general, a stable process can not be simulated directly. In practice, we can approximate it by a Gaussian and a compound Poisson process. In particular, we replace the small jumps by a Gaussian process. Thus, we are interested in nonlinear filtering where the signal and observation processes are corrupted by a Gaussian and a compound Poisson process. To catch up the jumps, we use methods from control engineering and construct a so-called Luenberger observer. These methods are combined with particle filters to construct an estimator of the state process, respective, an estimator of the density process. We apply this method to a mathematical pendulum, a single-link flexible joint robot, and a Van der Pol oscillator.
Download the full text of article from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.