A PARTICLE FILTER FOR NONLINEAR
FILTERING WITH LÉVY JUMPS

Abstract

Dynamical systems arise in engineering, physical sciences as well as in social sciences. If the state of a system is known, one also knows its properties, and may, e.g., stabilise the system and prevent it from blowing up, or predict its near future. However, the state of a system consists often on internal parameters which are not always accessible. Instead, often only an observation process $Y$, which is a transformation of the current state, is accessible. Furthermore, a system operates in real environments; hence, itself and its observation are affected by random noise and/or disturbances. So, in reality, the dynamics of the system and the observation are corrupted by noise. The problem of nonlinear filtering is estimating the state of the system $X(t)$ at a given time $t>0$ through the data of the observation $Y$ until time $t$ (i.e. $\{Y(s):0\le s\le t\}$).

Usually, one considers models where the state process and the observation process are perturbed by Gaussian noise. When these perturbations are known to exhibit extreme behaviour, as seen frequently in application from finance or environmental studies, a model relying on the Gaussian distribution is not appropriate. A suitable alternative could be a model based on a heavy-tailed distribution, as the stable distribution. In such a model, these perturbations are allowed to have extreme values with a probability which is significantly higher than in a Gaussian-based model.

In general, a stable process can not be simulated directly. In practice, we can approximate it by a Gaussian and a compound Poisson process. In particular, we replace the small jumps by a Gaussian process. Thus, we are interested in nonlinear filtering where the signal and observation processes are corrupted by a Gaussian and a compound Poisson process. To catch up the jumps, we use methods from control engineering and construct a so-called Luenberger observer. These methods are combined with particle filters to construct an estimator of the state process, respective, an estimator of the density process. We apply this method to a mathematical pendulum, a single-link flexible joint robot, and a Van der Pol oscillator.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 5
Year: 2021

DOI: 10.12732/ijam.v34i5.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] V. Agarwal and H. Parthasarathy, Disturbance estimator as a state observer with extended Kalman filter for robotic manipulator, Nonlinear Dynamics, 85 (2016), 2809-2825.
  2. [2] H. Ahn and R. Feldman, Optimal filtering of a Gaussian signal in the presence of L´evy noise, SIAM J. Appl. Math., 60 (2000), 359–369.
  3. [3] A. Alessandri, Design of observers for Lipschitz nonlinear systems using LMI, IFAC Nonlinear Control Systems, 37 (2004), 459–464. A PARTICLE FILTER FOR NONLINEAR... 867
  4. [4] C. Andrieu, A. Doucet, S. Singh, and V. Tadic, Particle methods for change detection, system identification, and control, In: Proceedings of the IEEE, 92 (2004), 42-438.
  5. [5] K. J. °Astr¨om and R. M. Murray, Feedback Systems, Princeton University Press, Princeton (2008).
  6. [6] A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Stochastic Modelling and Applied Probability, 60, Springer, New York (2009).
  7. [7] A. Bensoussan, Nonlinear Filtering Theory, in Recent Advances in Stochastic Calculus (College Park, MD, 1987), Progr. Automat. Info. Systems, Springer, New York (1990).
  8. [8] C. Ceci and K. Colaneri, Nonlinear Filtering for jump diffusion processes with a financial application, Advances in Appl. Prob., 44 (2012), 603–906.
  9. [9] U. Cherubini, E. Luciano, and W. Vecchiato, Copula Methods in Finance, John Wiley & Sons Ltd (2004).
  10. [10] C. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapmann & Hall (2004).
  11. [11] D. Coufal, On convergence of kernel density estimates in particle filtering, Kybernetika, 52 (2016), 735-756.
  12. [12] D. Creal, Analysis of filtering and smoothing algorithms for L´evy-driven stochastic volatility models, Comput. Statist. Data Anal., 52 (2008), 2863–2876.
  13. [13] D. Crisan, Exact rates of convergence for branching particle approximation to the solution of the Zakai equation, Anal. of Prob., 31 (2003), 693–718.
  14. [14] D. Crisan and A. Doucet, A survey of convergence results on particle filtering methods for practitioners, IEEE Transactions on Signal Processing, 50 (2002), 736-746.
  15. [15] D. Crisan and B. Rozovskii, The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford (2011).
  16. [16] P. Del Moral, Measure valued processes and interacting particle systems: Applications to nonlinear filtering problems, Anal. of Appl. Probab., 8 (1998), 438–495. 868 E. Hausenblas, K. Fahim, P.W. Fernando
  17. [17] P. Del Moral, Nonlinear filtering: Interacting particle solution, Markov Processes Relat. Fields, 2 (1996), 555–580.
  18. [18] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo Methods in Practice, Springer-Verlag, New York (2001).
  19. [19] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory, Macmillan Publishing Company, New York (1992).
  20. [20] K. Eilertson, J. Fricks, and M. Ferrari, Estimation and prediction for a mechanistic model of measles transmission using particle filtering and maximum likelihood estimation, Stat. Med., 38 (2019), 4146-4158.
  21. [21] R. J. Elliott and W. P. Malcolm, A general smoothing equation for Poisson observations, In: IEEE Conf. Decision and Control , 4 (1999), 4106–4110, Phoenix, AZ, USA.
  22. [22] R. J. Elliott and W. P. Malcolm, General smoothing formulas for Markovmodulated Poisson observations, IEEE Trans. Automat. Control., 50 (2005), 1123–1134.
  23. [23] B. P. W. Fernando, and E. Hausenblas, Nonlinear filtering with correlated L´evy noise characterized by copulas, Braz. J. Probab. Stat., 32 (2018), 374421.
  24. [24] B. P. W. Fernando and S. S. Sritharan, Nonlinear filtering of stochastic Navier-Stokes equation with Itˆo-L´evy noise, Stoch. Anal. Appl., 31 (2013), 381–426.
  25. [25] N. Gordon, D. Salmond, and A. Smith, Novel approach to nonlinear/nonGaussian Bayesian state estimation, In: IEEE Proceedings-F, 140 (1993), 107-113.
  26. [26] Y. Iba, Population Monte Carlo algorithms, Transactions of the Japanese Society for Artificial Intelligence, 16 (2001), 279-286.
  27. [27] M. Isaard and A. Blake, Contour tracking by stochastic propagation of conditional density, In: European Conference on Computer Vision, (1996), Cambridge, 343-356.
  28. [28] A. Jasra, F. Yu, and J. Heng, Multilevel particle filters for the non-linear filtering problem in continuous time, Stat. Comput., 30 (2020), 1381-1402. A PARTICLE FILTER FOR NONLINEAR... 869
  29. [29] G. Kallianpur and C. Striebel, Estimation of stochastic systems, Arbitrary system process with additive white noise observation errors. Annals of Mathematical Statistics, 39 (1968), 785–801.
  30. [30] R. E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME–Journal of Basic Engineering, 82 (1960), 35– 45.
  31. [31] R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Trans. ASME Ser. D. J. Basic Engrg., 83 (1961), 95–108.
  32. [32] K. Kanazawa, D. Koller, and S. Russell, Stochastic simulation algorithms for dynamics probabilistic networks, In: Eleventh Annual Conference on Uncertainty in AI (1995), 346-351.
  33. [33] G. Kitagawa, Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, Journal of Computational and Graphical Statistics, 5 (1996), 1-25.
  34. [34] A. Kolmogoroff: Sur l’interpolation et extrapolation des suites stationnaires. Comptes Rendus de Academic des Science, 208 (1939), 2043–2045.
  35. [35] A. Kolmogoroff, Interpolation und Extrapolation von station¨aren zuf¨alligen Folgen, Bull. Acad. Sci. URSS S´er. Math. [Izvestia Akad. Nauk. SSSR] , 5 (1941), 3–14.
  36. [36] N. Krylov and B. Rozovski˘ı, The Cauchy problem for linear stochastic partial differential equations, Izv. Akad. Nauk SSSR Ser. Mat., 41 ( 1977), 1329–1347.
  37. [37] N. Krylov and B. Rozovski˘ı, Conditional distributions of diffusion processes, Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978), 356–378.
  38. [38] N. Krylov and B. Rozovski˘ı, Stochastic partial differential equations and diffusion processes, Uspekhi Mat. Nauk., 37 (1982), 75–95.
  39. [39] H. J. Kushner, On the differential equations satisfied by conditional probability densities of Markov processes, with applications, J. Soc. Indust. Appl. Math. Ser. A Control., 2 (1964), 106–119.
  40. [40] H. J. Kushner, Dynamical equations for optimal nonlinear filtering, J. Differential Equations, 3 (1967), 179–190. 870 E. Hausenblas, K. Fahim, P.W. Fernando
  41. [41] W. Li, Z. Wang, Y. Yuan, and L. Guo, Two-stage particle filtering for non-Gaussian state estimation with fading measurements, Automatica J. IFAC, 115 (2020), 108882.
  42. [42] D. G. Luenberger, Observing the state of a linear system, IEEE Transaction on Military Electronics, 8 (1964), 74-80.
  43. [43] J. MacCormick and A. Blake, A probabilistic exclusion principle for tracking multiple objects, In: International Conference on Computer Vision (1999), 572-578.
  44. [44] N. Metropolis and S. Ulam, The Monte Carlo method, Journal of the American Statistical Association, 44 (1949), 335-341.
  45. [45] P. Moral, Measure valued processes and interacting particle systems: Application to non-linear filtering problems, Annals of Applied Probability, 8 (1998), 438-495.
  46. [46] T. M¨uller-Gronbach, E. Novak and K. Ritter, Monte Carlo algorithms, Springer-Lehrbuch, Berlin: Springer (2012).
  47. [47] B. N. Oreshkin, X. Liu, and M. Coates, J. Efficient delay-tolerant particle filtering, IEEE Trans. Signal Process, 59 (2011), 3369-3381.
  48. [48] E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3 (1979), 127–167.
  49. [49] E. Pardoux: Filtrage non lin´eaire et ´equations aux d´eriv´ees partielles stochastiques associ´ees. In: ´Ecole d’´Et´e de Probabilit´es de Saint-Flour XIX—1989, volume 1464 of Lecture Notes in Math. (1991), 67–163. Springer, Berlin.
  50. [50] L. Pavelkov´a, Nonlinear Bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation, Kybernetika, 47 (2011), 370-384.
  51. [51] S. Popa and S. S. Sritharan, Nonlinear filtering of Itˆo-L´evy stochastic differential equations with continuous observations, Commun. Stoch. Anal., 3 (2009), 313-330.
  52. [52] M. Prokeˇsov´a and V. Beneˇs, Nonlinear filtering in spatio–temporal doubly stochastic point processes driven by OU processes, Kybernetika, 42 (2006), 539-556. A PARTICLE FILTER FOR NONLINEAR... 871
  53. [53] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House, Norwell, Massachusetts, 2004.
  54. [54] L. Sheng, Y. Niu, M. Gao, and D. Zhou, Polynomial filtering for nonlinear stochastic systems with state- and disturbance-dependent noises, Internat. J. Robust Nonlinear Control, 30 (2020), 4726-4743.
  55. [55] D. Simon, Optimal State Estimation: Kalman, H1 and Nonlinear Approaches, Wiley, New York (2006).
  56. [56] W. Song, Z. Wang, J. Wang, and J. Shan, Particle filtering for a class of cyber-physical systems under Round-Robin protocol subject to randomly occurring deception attacks, Inform. Sci., 544 (2021), 298-307.
  57. [57] D. Sornette and K. Ide, The Kalman-L´evy filter, Phys. D., 151 (2001), no. 2-4, 142-174.
  58. [58] R. L. Stratonoviˇc, On the theory of optimal nonlinear filtering of random functions, Teor. Verojatnost. i Primenen., 4 (1959), 239–242.
  59. [59] R. L. Stratonoviˇc, Conditional Markov processes, Teor. Verojatnost. i Primenen., 5 (1960), 172–195.
  60. [60] P. Trivedi and D. Zimmer, Copula Modeling: An Introduction for Practitioners, now Publishers Inc., Hanover, MA 02339 USA (2005).
  61. [61] X. Wang, L. Li, and W. Xie, A novel T-S fuzzy particle filtering algorithm based on fuzzy C-regression clustering, Internat. J. Approx. Reason., 117 (2020), 81-95.
  62. [62] L. Wen, J. Wu, L. Lu, and J. Li, A Defensive Marginal Particle Filtering Method for Data Assimilation, SIAM/ASA J. Uncertain. Quantif., 8 (2020), 1215-1235.
  63. [63] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series. With Engineering Applications, The Technology Press of the Massachusetts Institute of Technology, Cambridge, Mass (1949).
  64. [64] N. Wiener, I am a Mathematician, MIT Press, Cambridge, Massachusetts (1956). 872 E. Hausenblas, K. Fahim, P.W. Fernando
  65. [65] W. M. Wonham, Some applications of stochastic differential equations to optimal nonlinear filtering, J. Soc. Indust. Appl. Math. Ser. A Control., 2 (1965), 347–369.
  66. [66] W. Wu, G. Wang, S. Ding, A. Song, and L. Yu, Repetitive accuracy degradation of numerical control rotary table based on hidden Markov model and improved particle filtering, J. Vib. Control, 26 (2020), 13991410.
  67. [67] J. Xiong, An Introduction to Stochastic Filtering Theory, Oxford Graduate Texts in Mathematics, 18. Oxford University Press, Oxford (2008).
  68. [68] W. Xia, M. Sun, and Q. Wang, Direct target tracking by distributed Gaussian particle filtering for heterogeneous networks, IEEE Trans. Signal Process., 68 (2020), 1361-1373.
  69. [69] J. Zabczyk, Mathematical Control Theory, Modern Birkh¨auser Classics. Birkh¨auser Boston, Inc., Boston, MA. An Introduction, Reprint of the 1995 Ed. (2008).
  70. [70] M. Zakai, On the optimal filtering of diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete., 11 (1969), 230–243.
  71. [71] P. Zhu, G. Wei, and J. Li, On hybrid consensus-based extended Kalman filtering with random link failures over sensor networks, Kybernetika, 56 (2020), 189-212.
  72. [72] S.H. ˙Zak, Systems and Control, Oxford series in electrical and computer engineering, Oxford University Press (2003).