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Abstract: Dynamical systems arise in engineering, physical sciences as well
as in social sciences. If the state of a system is known, one also knows its
properties, and may, e.g., stabilise the system and prevent it from blowing
up, or predict its near future. However, the state of a system consists often
on internal parameters which are not always accessible. Instead, often only
an observation process Y , which is a transformation of the current state, is
accessible. Furthermore, a system operates in real environments; hence, itself
and its observation are affected by random noise and/or disturbances. So, in
reality, the dynamics of the system and the observation are corrupted by noise.
The problem of nonlinear filtering is estimating the state of the system X(t)
at a given time t > 0 through the data of the observation Y until time t (i.e.
{Y (s) : 0 ≤ s ≤ t}).

Usually, one considers models where the state process and the observation

Received: April 8, 2021 © 2021 Academic Publications
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process are perturbed by Gaussian noise. When these perturbations are known
to exhibit extreme behaviour, as seen frequently in application from finance
or environmental studies, a model relying on the Gaussian distribution is not
appropriate. A suitable alternative could be a model based on a heavy-tailed
distribution, as the stable distribution. In such a model, these perturbations are
allowed to have extreme values with a probability which is significantly higher
than in a Gaussian-based model.

In general, a stable process can not be simulated directly. In practice, we can
approximate it by a Gaussian and a compound Poisson process. In particular,
we replace the small jumps by a Gaussian process. Thus, we are interested
in nonlinear filtering where the signal and observation processes are corrupted
by a Gaussian and a compound Poisson process. To catch up the jumps, we
use methods from control engineering and construct a so-called Luenberger
observer. These methods are combined with particle filters to construct an
estimator of the state process, respective, an estimator of the density process.
We apply this method to a mathematical pendulum, a single-link flexible joint
robot, and a Van der Pol oscillator.

AMS Subject Classification: 60G35, 93B52, 62M20, 60G51, 60J75, 60H35
Key Words: nonlinear filtering; feedback algorithm; particle systems; Lévy
processes; Lévy copula

1. Introduction

Stochastic filtering is one of the main approaches to tackle many problems
emerging from fields such as engineering sciences, physics, fluid dynamics, and
others. The main target in stochastic filtering is to predict a process evolving
by a given dynamical system, usually called the signal process. Such a signal
process can be the position of a drone or the state of a balanced system like a
segway personal transporter or an arm of a single-link flexible joint robot. The
signal process X = {X(t) : t ≥ 0,X(0) = x0 ∈ Rd} is usually modelled by an
ordinary differential equation given by

dX(t) = f(X(t)) dt, t > 0, X(0) = x0 ∈ Rd, (1)

where f : Rd → Rd is a possible nonlinear function. In many problems arising
from the disciplines mentioned above, it is not possible to estimate the signal
process directly. Usually, the state of the process is given by a transformation
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of X, i.e., by a process Y = {Y (t) : t ≥ 0} given by

Y (t) =

∫ t

0
h(X(s)) ds, t > 0, Y (0) = 0 ∈ Rm. (2)

Here, h : Rd → Rm is supposed to be a continuously differentiable function
whose properties will be specified later on.

In practice, systems are operating in real environments and are inevitably
affected by random noise and/or disturbances. The signal process X is exposed
to unpredictable external perturbations. A sudden wind gust may perturb a
drone; the arm of a single-link flexible joint robot may be kicked by another
object nearby, a driver of a segway may be startled and flinches. Secondly,
the measurements are usually corrupted by errors, depending on the quality of
the sensors. These unpredictable perturbations and imprecise measurements
are modelled by adding a random forcing term to the signal process X and the
transformation Y . This mathematical approach to such a more realistic model is
through stochastic differential equations (SDE). In this way, we model the signal
processX and the observed process Y by stochastic differential equations driven
by some random noise. To model the measurements errors, we add a Wiener
process, to model the jumps or abrupt changes, we add a Lévy process. The
observation data at time t > 0 are given by the information which accumulates
all data observing Y until time t.

To be more precise, let f : Rd → Rd, σ0 : Rd → L(Rm0 ,Rd), σ1 : Rd →
L(Rm1 ,Rd) be three Lipschitz continuous functions. Also, we assume that
f ∈ C1(Rd;Rd). The stochastic process L0 be either a Rm0–valued Wiener
process with covariance Q0. Let L = (L1, L2) be a R

m1×Rm2–valued compound
Poisson processes. We suppose that the signal processX = {X(t) : t ≥ 0} solves
the following SDE:







dX(t) = f(X(t)) dt+ σ0(X(t−)) dL0(t)
+σ1(X(t−)) dL1(t), t > 0,

X(0) = x0 ∈ Rd.
(3)

To describe the observation process, let σ2 be a real constant and let h : Rd →
Rk and σ3 : R

k → L(Rm2 ,Rk) be two Lipschitz continuous functions. Moreover,
we assume that h ∈ C1(Rd;Rk). We suppose that the observation process Y
solves the following SDE







dY (t) = h(X(t)) dt + σ2dW2(t)
+σ3(Y (t−)) dL2(t), t > 0,

Y (0) = y0 ∈ Rk,
(4)



820 E. Hausenblas, K. Fahim, P.W. Fernando

where W2 be a Rk–valued Wiener process with covariance Q2. The dependence
structure of L1 and L2 is modelled by a copula H. The observation data at
time t > 0 are given by the information which accumulates all data observing
Y until time t; or, mathematically, by the σ–field generated by Y until time t.
To be more precise, let {Xt : t ≥ 0} and {Yt : t ≥ 0} be the filtration defined
by Xt = σ({X(s), s ≤ t}) and Yt = σ({Y (s), s ≤ t}), respectively. In addition,
let X = σ(∪t≥0Xt) and Y = σ(∪t≥0Yt).

The filtering problem consists in determining at a fixed time t > 0 an
estimator of the process X(t) which is usually the conditional distribution of
the signal X(t), given the information accumulated from observing Y in the
time interval [0, t]. The estimation is required to satisfy three properties, which
have then been commonly adhered to:

◦ Causality, Xt being estimated using {Ys}s≤t;

◦ Optimality, the estimate X̂t minimizing the mean square error E[ |X −
X̂t|

2] if the variance is finite;

◦ Online estimation, the estimate X̂t being available at any arbitrary time
t.

This requirements are satisfied by the Bayes estimator given by the condi-
tional expectation

X̂(t) = E [X(t) | Yt] , t > 0. (5)

To compute also functionals of X(t), one is interested additionally in an esti-
mator of the density of X(t), that is, for φ being twice differentiable, the Bayes
estimator given by the conditional expectation

π̂t(φ) = E [φ(X(t)) | Yt] , φ ∈ C2(Rd;R). (6)

Kolmogorov and Wiener obtained the first results in linear filtering of ran-
dom processes, [34, 35] for the discrete case and [63] for the continuous case.
Wiener solved the problem using the spectral theory of stationary processes.
[30] and [31] have extended the work of Wiener to the case where the signal
process X is given by the following linear stochastic integral equation

X(t) = X(0) +

∫ t

0
f(X(s))ds +

∫ t

0
σ(X(s))dW1(s),
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where W1 = {W1(t) : t ≥ 0} is a Wiener process and observation process solve
a linear stochastic equation. The motivation for linear filtering came mainly
from applications in aerospace engineering.

While Bucy and Kalman were pioneered the theory of linear stochastic fil-
tering, [58, 59] were initiating the development of the probabilistic approach to
nonlinear filtering. [39, 40] and also [65] independently developed the continu-
ous nonlinear theory.

Assuming that X and Y solve some nonlinear SDEs as above, [39] de-
rived the equation for nonlinear filtering, that is, the equation for the con-
ditional distribution of X knowing Y . This is a nonlinear Stochastic PDE
and is also know as Kushner-Stratonovich equation (or the Fujisaki-Kallianpur-
Kunita equation). [70] developed the equivalent linear equation by a separate
technique. [29] derived a Bayes’ formula which, also known as the Kallianpur-
Striebel formula, and permits to derive the Kushner equation from the Zakai
equation.

The stochastic partial differential equations associated with the filtering
equations with observation having continuous paths were further investigated,
in particular, by [36, 37, 38] using methods inherited from classical PDE theory
and by [48, 49] using a functional analytic approach. They analysed the density
process

πt(φ) := E [φ(X(t)) | Y (s); 0 ≤ s ≤ t] , φ ∈ C2
b (R

d;R).

Interpreting the filtering equation as a stochastic partial differential equation,
Krylov and Rozovskii were able to weaken the condition φ ∈ C2

b (R
d;R).

Nowadays, nonlinear filtering is well developed and has been extensively
studied, see, e.g. [71, 50, 52, 54]. The following monographs are devoted to this
topic: [6, 7, 49, 67] and the Oxford Handbook of Nonlinear Filtering [15]. In
the case where the signal process is driven by a Lévy process, fewer works can
be found. Most of these works deal with the issue where the signal process is
driven by a Wiener process, and the observation process is driven by a Lévy
process with Gaussian part, see, e.g. [2, 12, 21, 22, 57]. Nonlinear filtering with
a pure jump process is considered in fewer works, see, e.g. [51, 8, 24] and the
references therein.

As already mentioned above, there are many different filtering methods in-
troduced in the literature. One of the essential technique is Particle filters was
initially developed in the 1940s by [44]. The author suggested studying sys-
tems by evaluating the properties of sets of particles rather than the properties
of individual particles. Moreover, [64] proposed something much like particle
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filtering. However, it wasn’t until the 1980s that the computing power was
sufficient for their implementation. The particle filter works well for problems
that are difficult for the conventional Kalman filter (i.e., systems that are highly
nonlinear). Particle filtering has many other names, i.e. [25], interacting parti-
cle approximations [45], sequential importance sampling [18][Chapter 11], the
condensation algorithm [27, 43], sequential Monte Carlo (SMC) filtering [4, 14],
Monte Carlo filtering [33], and surviva1 of the fittest [32]. The origins of parti-
cle filtering can be found in [26]. Interesting book on the particle filter can be
seen in [18, 53, 55, 6]. Recently, particle filtering has attracted the attention of
many researchers, see [56, 62, 28, 66, 68, 41, 61, 20, 47, 11].

In this paper, we focus on particle filtering methods to provide an estimator
X̂ of the state of the system. The focus of this work is how to treat the jump
part of the random force. To deal with the jumps, we use techniques coming
from engineering, i.e. we use a feedback algorithm to catch up the original
process. In addition, we illustrate the applicability by three examples, the
mathematical pendulum perturbed by random kicks, a single-link flexible joint
robot coming from engineering, and the Van der Pol oscillator. For the particle
filter, we simulate a sample of virtual twins catching up the jumps by a feedback
algorithm. In a second step, we deal with the Gaussian noise, by implementing
incorporating the observation by adding some weights. That means we To
model the dependence structure of the different Lévy processes, we use the
concepts of copulas, already used in [23].

The article is organised as follows. In Section 2, we provide a brief intro-
duction to control theory and treat the case where X and Y are only perturbed
by a jump process. In Section 3, we introduce the particle filtering mechanism
with jump processes, and also we provide a small description of the branching
mechanism as well as the simulation results. In Section 4, we discuss the er-
ror due to sampling on one step, weak error due to discretisation in time and
accumulated error. In Appendix A we summarise the necessary facts about
copulas.

2. How to catch up with the Lévy jumps

Usually, a virtual observer in the sense of Luenberger is used in engineering to
reconstruct the state of a system given only the output of the system and not
knowing the initial data. However, in this work, we use the virtual observer,
called virtual twin to avoid confusion with the observation process, to recon-
struct the state of the system being perturbed by a Lévy process. Firstly, we
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consider the case where jump processes only perturb X and Y . To be more
precise, we consider a signal process X perturbed by a compound Poisson pro-
cess L1. The observation process Y will also be perturbed by a compound
Poisson process, denoted by L2 and depending on L1. Since the perturbation
by a compound Poisson process can be seen as a splitting of in deterministic
systems with random initial data running a random time, we first describe the
construction of a virtual twin describing the dynamical behaviour of a deter-
ministic system where the initial state is unknown. In a second step, we analyse
the whole process.

In the following, we describe briefly the setting of this section. We suppose
that the signal process X = {X(t) : t ≥ 0} solves the following SDE:

{
dX(t) = f(X(t−)) dt+ σ1(X(t−)) dL1(t), t > 0,
X(0) = x0 ∈ Rd,

(7)

where L1 is an m1–dimensional compound Poisson process. Suppose that the
observable process Y solves the following SDE

{
dY (t) = h(X(t−)) dt+ σ2(Y (t−)) dL2(t), t > 0,
Y (0) = y0,

(8)

where L2 is a m2–dimensional compound Poisson process. Let us note that
there are two cases to distinguish: one, where L1 and L2 are independent, and
the other, where L1 and L2 are depending on each other. If both processes
are independent, the jump times and jump sizes of L1 and L2 are independent.
Hence, the algorithm would be the same as in the second case; one only omit
L2.

Let us now consider the case L = (L1, L2) be two Lévy processes where L1

and L2 are not independent and there exists a Lévy measure ν on Rm1 × Rm2

such that the margin of the first coordinate represents the Lévy measure of L1

and its projection on the second coordinate represents the Lévy measure on
L2. Furthermore, we assume that ν is absolutely continuous with respect to
the Lebesgue measure on (Rm1 × Rm2) and put σ = ν(Rm1 × Rm2). Using the
representation of a compound Poisson processes in terms of the sum over their
jumps (see [10, Chapter 3.2]), the processes L1 and L2 can be represented as a
sum over finitely many jumps. However, both processes jump at the same time.
Therefore, let {τn : n ∈ N} be a family of independent exponential distributed
random variables with parameter σ, let

Tn :=

n∑

j=1

τj , n ∈ N, (9)
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and let {N(t) : t ≥ 0} be the counting process defined by

N(t) :=

∞∑

j=1

1[Tj ,∞)(t), t ≥ 0. (10)

Let {∆jL = (∆jL1,∆jL2) : j ∈ N} be a family of independent, distributed
Rm1 ×Rm2–valued random variables. The multivariate distribution function is
given by

F (x1, x2) := P ({ω ∈ Ω : ∆jL1(ω) ≤ x1,∆jL2(ω) ≤ x2})

:=
ν({X1 : X1 ≤ x1} × {X2 : X2 ≤ x2})

σ
.

Here, we set B ≤ b for B = (B1, · · · , Bd)
T , b = (b1, · · · , bd)

T ∈ Rd iff Bi ≤ bi
for all i = 1, 2, · · · , d. The marginal distribution functions Fj , j = 1, 2, are
given by

F1(x1) = lim
x2→∞

F (x1, x2), F2(x2) = lim
x1→∞

F (x1, x2),

where x1 ∈ Rm1 and x2 ∈ Rm2 . The Lévy process Lj for j = 1, 2 can be
represented as

Lj(t) =

{

0 for N(t) = 0,
∑N(t)

k=1 ∆kLj for N(t) > 0.
(11)

Let us fix the time t ≥ 0. We assume that we know at time t ≥ 0 the number
of jumps N(t), the jumping time T1, . . . , TN(t), and the size of the jumps of
Lj, i.e. {∆1Lj ,∆2Lj , . . . ,∆N(t)Lj} for j = 1, 2. Since for any k = 1 . . . , N(t)
the jumps ∆kL1 and ∆kL2 are not independent, {∆1L2,∆2L2, . . . ,∆N(t)L2}
has an impact of the distribution of {∆1L1,∆2L1, . . . ,∆N(t)L1}. To model the
dependence structure we use the concept of copulas, for more details and the
notation used here, we refer to Appendix A. The conditional distribution of
∆kL1 given ∆kL2 is given by

ν1x2
(x1) := P (∆kL1 = x1 | ∆kL2 = x2)

=
c(F−11 (x1), F

−1
2 (x2))

c(1, F−12 (x2))
f1(x1), x1, x2 ∈ Rd, (12)

where f1 is the density function of F1, and

c(u1, u2) :=
∂H

∂u1∂u2
(u1, u2)
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is the density of the copula. Here, H is called copula. To construct an estimator
of X given Y we use the fact that between the jumps, the systems (7) and (8)
are governed by a deterministic nonlinear system with a random initial data.
Hence, we first simulate a sample starting at the given initial data until the
first jump time T1. At T1 we dice a sample of the jump ∆1L1 given ∆1L2

and start modelling X by a feedback algorithm using the information given by
the observation process Y until T2. By the feedback algorithm, the simulated
process tries to catch up the signal process X. At T2 we dice again a sample of
the jump ∆2L1 and proceed as before.

In the following, we motivate the feedback algorithm by firstly introducing
some facts about controllability and observability for linear systems, for details
we refer to the book about control engineering [69, 5, 19]. Also, we explain
how to construct a virtual observer, a so-called virtual twin. Here, equation
(13) corresponds to (3). However, the second is not of type (4). Hence, firstly,
we extend the system such that y corresponds in the linear case to (4) and
then construct a virtual observer. Finally, we apply the algorithm to simulate
a sample of virtual observers mimicking x by a feedback control.

2.1. A virtual twin of a deterministic linear system

In this paragraph, we consider a linear system with signal process x = {x(t) :
t ≥ 0}, observation process y = {y(t) : t ≥ 0} and input u = {u(t) : t ≥ 0} of
the following kind

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), t > 0, x(0) = x0 ∈ Rd. (13)

Here, A is a d × d matrix, B a d × m matrix, and C a k × d matrix. If we
emphasise the dependence of x on u and x0 we will write x(u, x0, ·) instead of
x(·).

The system (13) is called controllable, if for any T > 0 and given points
x0, xT ∈ Rd there exists a path u : [0, T ] → Rm such that x(u, x0, T ) = xT . A
criterium if a system is controllable or not is given by the so-called controllability
matrix. The controllability matrix [A | B] is the matrix generated by

(B,AB,A2B, . . . , Ad−1B).

Now, if rank([A | B]) = d the system (13) is controllable. The system (13)
is called observable, if it is possible to reconstruct x0 for any T > 0 given
the observation {y(t) : t ∈ [0, T ]} and the path u : [0, T ] → Rm. Note, both
concepts, controllability and observability, are in duality. In particular, if a



826 E. Hausenblas, K. Fahim, P.W. Fernando

system described by (A,B) is controllable, then the system where A is replaced
by its adjoint AT and B is replaced by BT is observable and vice versa. From
this duality follows, if rank([AT | CT ]) = d the system (13) is observable. We
have seen, if a system of type (13) is observable, then we can construct a virtual
observer in the sense of Lueneberger, see, e.g. [42]. Here, the first task is to find
a d× k–matrix K such that A−KC has only eigenvalues with a negative real
part. However, if the system (A | C) is observable, Theorem 3.7 in [72] says
given a set Λ = {λk : k = 1, . . . , d} of complex numbers being symmetric to the
real axis, then there exists a matrix K such that A − KC has eigenvalues Λ.
One technique that works for the single output case, i.e. k = 1, is Ackermann’s
formula (see [72])

K := p(A)U−1 [0, . . . , 0, 1]T ,

where U := [AT | CT ]T and p(r) := (r− λ1)(r− λ2) · · · (r− λd). Let us assume
that the eigenvalues λ1, . . . , λd of A − KC has negative real part. Then the
system given by

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t)), t > 0, x̂(0) = x̂0, (14)

is stable and the difference between x̂ and x tends to zero as t tends to infin-
ity. If u = 0 and err(t) := x(t) − x̂(t), then |err(t)| ≤ |x0 − x̂0|e

−|λ|t, where
λ := λk such that ℜ(λk) = maxj ℜ(λj). If the virtual observer approaches the
system without overshooting depends on the imaginary part of the eigenvalues.
Thus, choosing the eigenvalues properly we can design the quality of the virtual
observer.

As mentioned before, y(t) = Cx(t) and (4) are of different type. To handle
an observer which accumulates the observations and does not reflect the in-
stantaneous state of the system we extend system (13) to describe the following
system

ẋ(t) = Ax(t) +Bu(t), y(t) =

∫ t

0
Cx(s) ds, t > 0, x(0) = x0, (15)

where C ∈ Rk×d. To transform the system in the form of (13) let us define

Ã :=

(
A 0
C 0

)

, C̃ := (0, I), B̃ :=

(
B
0

)

, x̃0 :=

(
x0
0

)

,

where 0 and I are zeros and identity matrices of appropriate dimensions, re-
spectively. Now, the system

˙̃x(t) = Ãx̃(t) + B̃u(t), ỹ(t) = C̃x̃(t), t > 0, x̃(0) = x̃0, (16)
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is of the form (13) and the projection onto the first d variables, denoted later on
by p1,d, is the solution of (15). It can be shown by straightforward arguments
that if (13) is observable, then the system (16) is observable. In fact, the
controllability matrix [ÃT | C̃T ] is given by

(

C̃T

(
CT

0

) (
ATCT

0

)

· · ·

(
(AT )d−1CT

0

))

,

from which we can see that if rank([AT | CT ]) = d, then

rank([ÃT | C̃T ]) = d+ k.

Similarly to before, if system (16) is observable, then we can construct a
virtual observer of system (16) and the virtual observer of x given by (15) is
the projection onto the first d variables. The main task is to find a vector K̃
such that

Ã− K̃C̃

has only eigenvalues with a negative real part. By this vector K̃, one can
construct a feedback control such that the information is given by ỹ = {ỹ(t) :
t ≥ 0} is sufficient to catch up the state of the process x̃ at time t > 0. In
particular, let x̂ = {x̂(t) : t ≥ 0} be a solution to







˙̂x(t) = Ãx̂(t) +

(
Bu(t)

0

)

+ K̃(y(t)− ŷ(t)), t > 0,

ŷ(t) = C̃x̂(t), t > 0 ,
x̂(0) = x̂0.

(17)

Then the virtual twin of the system (15) is given by p1,dx̂.

2.2. A virtual twin for nonlinear systems

Let us consider the nonlinear system given by

ẋ(t)=f(x(t)) +Bu(t), y(t)=

∫ t

0
h(x(s)) ds, t > 0, x(0) = x0, (18)

where x is the state process, y is the observation and u is the perturbation, B
a given matrix independent on time, and, f : Rd → Rd, h : Rd → Rm are be
two Lipschitz continuous and differentiable functions. Now we transform the
system (18) given by

˙̃x(t) = f̃(x̃(t)) + B̃u(t), ỹ(t) = C̃x̃(t), t > 0, x̃(0) = x̃0, (19)
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with x̃ := (x, y)T , C̃ := (0, I), B̃ := (B, 0)T , x̃0 := (x0, 0)
T , and

f̃(x̃) :=

(
f(p1,dx̃)
h(p1,dx̃)

)

,

where 0 and I are zeros and identity matrices of appropriate dimensions, re-
spectively.

The virtual observer is constructed first by linearizing system (19) which
results in a system of type (16). To have observability of the linearized system
we assume that Dh(x) and Df (x) is an observable system for all x ∈ Rd where
Df and Dh denote the Jacobi matrix of f and h, respectively. The feedback K̃
is constructed from the linearized system, however, the simulation is based on
the original system (18). To construct the linearization we observes that in a
neighbourhood of x0 the system (19) behaves similar to the linearized system
x̄ given by

˙̄x(t) = Ã(x̄0)x̄+ B̃u(t), ȳ(t) = C̃x̄(t) ds, t > 0, x̄(0) = x0, (20)

where

Ã(x) := Df̃ (x) :=

(
Df (x) 0
Dh(x) 0

)

is the Jacobi matrix of f̃ . In this way, to calculate the feedback, we replace the
nonlinear system (19) by its linearised extended version.

The feedback map K̃ : Rd+k → R(d+k)×k is constructed such that

Ã(x)− K̃(x)C̃, x ∈ Rd+k (21)

has only eigenvalues Λ = {λk : k + 1, . . . , d + k} with negative real part. One
technique that works for the single output case, i.e. k = 1, is Ackermann’s
formula (see [72]). The virtual observer x̂ is the solution to







˙̂x(t) =

(
f(p1,dx̂(t))
h(p1,dx̂(t))

)

+

(
Bu(t)

0

)

+K̃(x̂(t)) (y(t) − ŷ(t)), t > 0,

ŷ(t) = C̃x̂(t), t > 0 ,
x̂(0) = x̂0,

(22)

where y = {y(t) : t ≥ 0} are the observation of the original system, the virtual
twin of the system (18) is given by p1,dx̂.
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2.3. A sample of virtual twins for a Lévy driven system

In this section, we construct a sample virtual copies {x1, . . . , xN} catching up
the state of a system driven by a compound process. In this section, we define
the setting, then we present the algorithm and illustrate its applicability by
some examples.

Let A = (Ω,F , (Ft)t≥0,P) be a probability space, L = (L1, L2) be a Rm1 ×
Rm2-valued compound Poisson process defined over A. The dependence struc-
ture of L is given by the copula H. We suppose that the signal process
X = {X(t) : t ≥ 0} solves

{
dX(t) = f(X(t)) dt + σ1(X(t−)) dL1(t), t > 0,
X(0) = x0,

(23)

where f : Rd → Rd and σ1 : Rd → L(Rm1 ,Rd) be two Lipschitz continuous
functions. Also, we assume that f ∈ C1(Rd;Rd).

To describe the observable, let h : Rd → R and σ2 : R → L(Rm2 ,R) be two
Lipschitz continuous functions. Moreover, we assume that h ∈ C1(Rd;R). The
observation process Y solves

{
dY (t) = h(X(t−)) dt+ σ2(Y (t−)) dL2(t), t > 0,
Y (0) = y0.

(24)

We assume that we know in the time interval [0, T ] the jump times {T1, T2, . . . , TK}
and the jumps {∆1L2,∆2L2, . . .∆KL2} of the processes Y . Let us denote the
continuous part of Y by Y c. In addition, we assume that the following assump-
tion is valid.

Assumption 2.1. Let us suppose the controllability matrix [Df (x)
T |

Dh(x)
T ] is invertible for all x ∈ Rd.

Algorithm 1. Let us denote the distribution of the initial data x0 by χ.
Let us assume that the state process X is a solution to (23) and the continuous
part of the observation process Y driven by (24) is given at grid points {t0 =
0 < t1 = τ < t2 = 2τ < · · · < (K − 1)τ = tK−1 < Kτ = tK = T}. In addition,
the times {Tj : j ∈ N} and the jumps {∆L2

j : j ∈ N} of the observation process
are also given. To be more precise, at time T ,

{Y c(0), Y c(τ), Y c(2τ), . . . , Y c(T )},
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the jump times

{T1, T2, . . . , TN}

and jump sizes
{

∆1L2,∆2L2, . . . ,∆NL2

}

are given. In this algorithm, we will compute the estimator X̂FB of the process
X. We follow the following steps.

• Step A: Find a mapping K̃ : Rd+1 → Rd+1 such that the real part of the
eigenvalues of (21) are strictly negative. As mentioned before, this can
be done, e.g., by the Ackerman method. Here, one fix the characteristic
polynomial p of the matrix Ã(x) − K̃(x)C̃. Then, the weights K̃(x) can
be computed by

K̃(x) := p(Ã(x))
(

[ÃT (x) | C̃T ]T
)−1

[0, . . . , 0, 1]T ,

where

Ã(x) :=

(
Df (x) 0
Dh(x) 0

)

, x ∈ Rd+1, and C̃ := (0, . . . , 0
︸ ︷︷ ︸

d times

, 1). (25)

• Step B: Fix 0 < τ < T , l = 1, n0 = 0 and number of sampleM . Simulate
a sample of initial points

{x10, x
2
0, . . . , x

M
0 },

where xj0, j = 1, . . . ,M are mutually independent and xj0
d
= χ, j =

1, . . . ,M . In addition, set yj0 := Y0 and ej0 := 0 for j = 1, . . . , N . The
empirical measure of x0 is now approximated by

π̂app
0 =

1

M

M∑

j=1

δ
x
j
0

.

• Step C: Find the smallest natural number nl such that nlτ ≥ Tl.

• Step D: Start from k = nl−1. Iterate the following steps:



A PARTICLE FILTER FOR NONLINEAR... 831

◦ Step (1): Simulate a new sample by

(

xjk+1

yjk+1

)

=

(

xjk
yjk

)

+ τ

(

f(xjk)

h(xjk)

)

+τK̃

((

xjk
yjk

))

ejk,

ejk+1 = Y c((k + 1)τ)− yjk+1.

◦ Step (2): If k < nl, replace k with k + 1 and go back to Step (1).
Otherwise, continue with Step E.

• Step E: Dice a sample of {∆lL
1
1,∆lL

2
1,∆lL

3
1, . . . ,∆lL

M
1 },

knowing the copula and the jumps of L2 at time Tl, i.e. ∆lL2. Replace
xjnl

by xjnl
+ σ1(x

j
nl
)∆lL

j
1 for j = 1, . . . ,M .

• Step F: If nlτ ≥ T , replace l with l + 1 and go back to Step (C).
Otherwise, continue to Step (G).

• Step G: Compute the feedback estimator at time t = kτ of the process
X is given by

X̂FB(kτ) :=
1

M

M∑

j=1

x̂jk

and the estimator of the feedback density process π̂app
k at time kτ is given

by

π̂app
k :=

1

M

M∑

j=1

δ
x̂
j
k

.

3. Particle filters for a general process

In case the perturbation is modelled by a Wiener process, particle filters are
a well-established tool to estimate the state process, see [6, 16, 17]. In this
section, we want to combine the feedback algorithm given in Algorithm 1 and
the particle methods to tackle the Wiener perturbation. The problem which
appears here is that the feedback depends on the driving noiseW2, in particular,
the feedback and the observation process will not be independent. Due to this
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fact, one has to introduce a correction term to get convergence. The section is
structured as follows. First, we give a short description of particle filters with
branching; then, secondly, we show that the feedback estimator is an unbiased
estimator, and in comparison to the estimator without feedback, the variance
is reduced significantly.

Let us recall the setting shortly within this section. Let f : Rd → Rd,
σ0 : Rd → L(Rm0 ,Rd), σ1 : Rd → L(Rm1 ,Rd) be two Lipschitz continuous
functions, and L0 be a Rm0–valued Wiener process with covariance Q0. Also,
we assume that f ∈ C1(Rd;Rd). Let L = (L1, L2) be a Rm1 × Rm2–valued
compound Poisson processes. We suppose that the signal process X = {X(t) :
t ≥ 0} solves







dX(t) = f(X(t)) dt+ σ0(X(t−)) dL0(t)
+σ1(X(t−)) dL1(t), t > 0,

X(0) = x0 ∈ Rd,
(26)

or, using the notation of (11)







dX(t) = f(X(t)) dt+ σ0(X(t−)) dL0(t)

+
∑N(t)

k=1 σ1(X(T−k ))∆kL1,
X(0) = x0 ∈ Rd.

(27)

To describe the observation process, let σ2 be a real constant and let h : Rd → R

and σ3 : R → L(Rm2 ,R) be two Lipschitz continuous functions. Moreover, we
assume that h ∈ C1(Rd;R). We suppose that the observable process Y solves







dY (t) = h(X(t)) dt + σ2dW2(t)
+σ3(Y (t−)) dL2(t), t > 0,

Y (0) = y0 ∈ Rk,
(28)

where W2 be a real–valued Wiener process with variance σ2
2 . Again using the

representation of (11) we can write







dY (t) = h(X(t)) dt + σ2dW2(t)

+
∑N(t)

k=1 σ3(Y (T−k ))∆kL2, t > 0,
Y (0) = y0 ∈ Rk,

(29)

As mentioned in the introduction, the filtering problem consists in deter-
mining at a fixed time t > 0 an estimator of the conditional distribution πt of
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the signal X given the information accumulated from observing Y in the time
interval [0, t], i.e., to find representation to

πt(φ) := E [φ(X(t)) | Yt] , t ≥ 0.

A trackable representation for π can be constructed via the Girsanov Trans-
form. Here, one chooses new measure Q such that the continuous part of Y is
a martingale over the probability space (Ω,Y, (Yt)t≥0,Q). For this purpose let
Z = {Z(t) : t ≥ 0} be given by

Z(t) := exp

(

−

∫ t

0
h(X(s)) dW2(s)−

1

2

∫ t

0
h2(X(s)) ds

)

, (30)

where t ≥ 0. Setting V (t) = Z(t)−1, we obtain as in [6, Eq. (3.30) page 56] that

dPt

dQ

∣
∣
∣
Ft

= V (t), t ≥ 0. (31)

Then the Kallianpur-Striebel formula gives (see [6, Proposition 3.16])

Eφ(X(t)) =

∫

R

πt(x)φ(x) dx =
EQ [φ(X(t))V (t) | Y]

EQ [V (t) | Y]
.

If the state process is perturbed by a Lévy process, one may also simulate a
bunch of particles mimicking the virtual twin of the state process X by com-
bining the feedback algorithm 1 and a particle filter. Due to the fact that the
feedback system includes knowledge of Y , a correction term has to be added,
and one has to mimic the following process







dXFB(t) = f(XFB(t)) dt+ K̃(XFB(t))
[

2
2+σ2

2

h(X(t))

−h(XFB(t))
]
dt− K̃(XFB(t))dW2(t)

+ σ0(X
FB(t−)) dL0(t)

+
∑N(t)

k=1 σ1(X
FB(T−k ))∆kL1, t > 0,

XFB(0) = x0.

(32)

The aim is to find at a given time t > 0 an estimator X(t). Later on in
Section 4, we will approximateX(t) by an particle filter. Here, we will show that
XFB(t) is indeed an estimator of X(t) and to verify the quality of the estimator
XFB(t). Here, the order of convergence depends on several parameters: the
number of particles, the size of the grid the observation process is sampled, and
the gain function K̃. The advantage of the gain is that if the gain is sufficiently
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large, the variance of the estimator will decrease, and one can choose a small
sample size. Before starting this result, we introduce the following notation.
Let µ(y) := E[∆1L1 | ∆1L2 = y] and

ϕ(y) := E[(∆1L1 − µ(y))2 | ∆1L2 = y], y ∈ Rd.

Assumption 3.1. For all x, ξ ∈ Rd there exists K(x) ∈ Rd such that

〈(Df (x)−K(x)Dh(x))ξ, ξ〉 + |σ1(x)|
2
HS + ϕ(x) ≤ λ|ξ|2, (33)

where λ < 0 and | · |HS
1 is the Hilbert-Schmidt norm of an operator.

To combine successfully the Algorithm 1 with a particle filter usually used
for the nonlinear filtering problem for SDEs with Gaussian noise, we need the
following assumption on the functions f and h:

Assumption 3.2. For any x, ξ ∈ Rd, 〈Df (x)ξ, ξ〉 is positive. Moreover,
we suppose the controllability matrix [Df (x)

T | Dh(x)
T ] is invertible and its

determinant is bounded away from zero for all x ∈ Rd.

Lemma 1. Let us assume that XFB(t) is defined in (32) and X(t) is the
original process given by (26). Then

(a) If Assumption 3.2 is satisfied, then XFB is an unbiased estimator of X. In
particular, for all t ∈ [0, T ] we have

E[XFB(t)] = E[E[X(t) | Yt]]

(b) If Assumption 3.1 is satisfied, then

E[|X(t)−XFB(t)|2 | Yt] =
1

|λ|
.

Proof. To show Item (a), we will show that

Var
[
XFB(t)−X(t) | Yt

]
= 0.

1Let (H, ‖ · ‖) be a Hilbert space and {ei : i ∈ I} is an orthonormal basis of H . The
Hilbert-Schmidt norm of a linear operator A on H is defined by ‖A‖2HS =

∑
i∈I

‖Aei‖
2.
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Note, that the process V = {V (t) : t ≥ 0} defined in (31) solves on (Ω,F ,P)
the equation







dV (t) = V (t)h(X(t)) [dW2(t) + h(X(t)) dt]
= V (t)h(X(t)) dY c(t),

V (0) = 1.
(34)

(Y c denotes the continuous part of Y , i.e. the part of Y without jumps). Since
the process W2(t) +

∫ t

0 h(X(s)) ds becomes a Brownian motion over (Ω,F ,Q),
V is a (Ω,F ,Q)–martingale.

First, let us define the un-normalized estimator by

X̂FB

ρ := EQ [XFB(t) | Yt] , and Xρ := EQ [X(t) | Yt] ,

and then the normalized estimator by

X̂FB

̺ :=
X̂FB

ρ

EV (t)
, and X̺ :=

Xρ

EV (t)
.

In the algorithm, we calculate for each small time interval first the density of
the unnormalized estimator, and then, we normalize the estimator in a second
step.

Observe, we know from the assumptions that [0,∞) ∋ t 7→ EQ[XFB(t) |
Yt] and [0,∞) ∋ t 7→ EQ[X(t) | Yt] are continuous. Next, we show that
EQ
[
|XFB(t)−X(t)|2 | Yt

]
= 0. Applying the Itô formula gives

1

2

(

|X(t) −XFB(t)|2 − |X(0) −XFB(0)|2
)

=

∫ t

0
〈X(s)−XFB(s), f(X(s)) − f(XFB(s))〉 ds

+

∫ t

0
〈X(s)−X(s),

(
σ0(X(s)) − σ0(X

FB(s))
)
dL0(s)〉 +

+

∫ t

0
〈σ(X(s)) − σ(XFB(s)), σ(X(s)) − σ(XFB(s)〉 ds

−

∫ t

0
〈X(s)−XFB(s),K(XFB(s))

2

2 + σ2
2

h(X(s))〉 ds

+

∫ t

0
〈X(s)−XFB(s),K(XFB(s))h(XFB(s))〉 ds

−

∫ t

0
〈X(s)−XFB(s),K(XFB(s))

2

2 + σ2
2

dW2(s)〉.
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Taking into account the change of measure we get

1

2
E

[

Z(t)|X(t) −XFB(t)|2 | Yt

]

− E|X(0) −XFB(0)|2

=

∫ t

0
E

[

Z(s)〈X(s)−XFB(s), f(X(s)) − f(XFB(s))〉 | Ys

]

ds

−

∫ t

0
E

[

Z(s)〈X(s)−XFB(s),K(XFB(s))

[ 2

2 + σ2
2

h(X(s)) − h(XFB(s))
]

〉 | Ys

]

ds

+
σ2
2

2 + σ2
2

∫ t

0
E

[

Z(s)〈XFB(s),K(XFB(s))h(X(s))〉 | Ys

]

ds

−
σ2
2

2 + σ2
2

∫ t

0
E

[

Z(s)〈X(s),K(XFB(s))h(X(s))〉 | Ys

]

ds

−

∫ t

0
Z(s)〈X(s)−XFB(s),K(XFB(s))

2

2 + σ2
2

dW2(s)〉

+

∫ t

0
Z(s)|X(s)−XFB(s)|2 h(X(s))dW2(s)

=

∫ t

0
E

[

Z(s)〈X(s)−XFB(s), f(X(s)) − f(XFB(s))〉 | Ys

]

ds

−

∫ t

0
E

[

Z(s)〈X(s)−XFB(s),K(XFB(s))

× (h(X(s)) − h(XFB(s)))〉 | Ys

]

ds

−

∫ t

0
Z(s)〈X(s)−XFB(s),K(XFB(s))

2

2 + σ2
2

dW2(s)〉

+

∫ t

0
Z(s)|X(s)−XFB(s)|2 h(X(s))dW2(s).

By taking into account the Lipschitz continuity of f and h and taking expec-
tation we obtain

1

2
E

[

EQ
[

|X(t) −XFB(t)|2 | Yt

]]

− E

[

E[|X(0) −XFB(0)|2 | Y0]
]

≤ (K + Lh + Lb)

∫ t

0
E

[

EQ
[
|X(s)−XFB(s)|2 | Ys

]]

ds.

By the definition of the unormalized estimators Xρ(t) and XFB

ρ (t), taking into
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account that XFB

0 = X0, and applying a Grownwall type Lemma, we get

|Xρ(t)− X̂FB

ρ (t)|2 ≤ 0.

To show the second item we use Assumption 3.1 and get

1

2
E

[

EQ
[

|X(t) −XFB(t)|2 | Yt

]]

− E

[

E[|X(0) −XFB(0)|2 | Y0]
]

≤ −λ

∫ t

0
E

[

EQ
[
|X(s)−XFB(s)|2 | Ys

]]

ds.

The Grownwall Lemma gives the assertion.

4. The particle filter, its numerical implementation, and some
examples

Calculating an particle filter of XFB, one is mimicking the process XFB by a
sample of mutually independent particles

{x1(t), . . . , xN (t) : t ≥ 0}.

In order to realize this method on a computer, one has to discretize this algo-
rithm in time. In particular, at a time grid Π = {t1, t2, . . . , tK} the observations
are incorporated by associating to each particle a weight {v1(t), . . . , vN (t) : t ≥
0}. These weights are updated the time points t ∈ Π following the Radon-
Nikodym derivative Z = {Z(t) : t ≥ 0}, given by equation (30). That means to
each particle xj corresponds a weight process vj solving the differential equation

vj(t) := 1 +
∆iY

c

ti+1 − ti

∫ t

0
vj(s)h(xj(s)) ds, t ∈ (ti, ti+1]. (35)

Here, ∆iY
c := Y c

ti+1
− Y c

ti
, i = 1 . . . ,K and Y c is the continuous part of Y .

As one can observe vj is a positive real valued process, determined by the
observations {Y c

t1
, Y c

t2
, Y c

t3
, . . . , Y c

tj
}. The measure-valued process at time tk, i.e.

πtk , is now approximated by the empirical measure

N∑

j=1

vj(tk)δxj(tk).

To perform this at each time step, we will calculate an approximation of the
density π by first calculating the so-called a priori density, and then taking into
account the observation by calculating the posterior density.
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However, one weak point of this method is that after a time the weights
may differ, and one particle takes over nearly the whole weight. To avoid this,
usually branching is introduced to get rid of the particles with low weights and
multiplying particles with large weights. There are several methods to generate
the random number of offspring by each particle at the end of each time step.
Here one can apply different branching mechanism; we took as the number of
the successors of a particle a Poisson distributed random variable. The method
may be arbitrary; the expectation value of the successors must be equal to the
weight.

Algorithm 2. Let be given the distribution of the initial data x0 by χ.
Let us assume that the state process X is a solution to (27) and the continuous
part of the observation process Y driven by (29) is given at grid points {t0 =
0 < t1 = τ < t2 = 2τ < · · · < (K − 1)τ = tK−1 < Kτ = tK = T}. In addition,
the times {Tj : j ∈ N} and the jumps {∆L2

j : j ∈ N} of the observation process
are also given. To be more precise, at time T ,

{Y c(0), Y c(τ), Y c(2τ), . . . , Y c(T )},

the jump times
{T1, T2, . . . , TN}

and jump sizes {

∆1L2,∆2L2, . . . ,∆NL2

}

are given. In this algorithm, we will compute the estimator X̂FB of the process
X. We follow the following steps.

• Step A: Find a mapping K̃ : Rd+1 → Rd+1 such that the real part of the
eigenvalues of (21) are strictly negative. As mentioned before, this can
be done, e.g., by the Ackerman method. Here, one fix the characteristic
polynomial p of the matrix Ã(x) − K̃(x)C̃. Then, the weights K̃(x) can
be computed by

K̃(x) := p(Ã(x))
(

[ÃT (x) | C̃T ]T
)−1

[0, . . . , 0, 1]T ,

where

Ã(x) :=

(
Df (x) 0
Dh(x) 0

)

, x ∈ Rd+1, and C̃ := (0, . . . , 0
︸ ︷︷ ︸

d times

, 1). (36)
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• Step B: Fix 0 < τ < T , l = 1, n0 = 0 and number of sampleM . Simulate
a sample of initial points

{x10, x
2
0, . . . , x

M
0 },

where xj0, j = 1, . . . ,M are mutually independent and xj0
d
= χ, j =

1, . . . ,M . In addition, set yj0 := Y0 and ej0 := 0 for j = 1, . . . , N . The
empirical measure of x0 is now approximated by

π̂app
0 =

1

M

M∑

j=1

δ
x
j
0

.

• Step C: Find the smallest natural number nl such that nlτ ≥ Tl.

• Step D: Start from k = nl−1. Iterate the following steps:

◦ Step (1): Simulate a new sample by







xjk+1 = xjk + τf(xjk)

+τp1,d

(

K̃(xjk)
)

ejk + ξjk+1,

yjk+1 = yjk +
2

2+τσ2
2

h(xjk)τ

+τpd+1

(

K̃(xjk)
)

ejk,

ejk+1 = 2
2+τσ2

2

Y c((k + 1)τ)− yjk+1,

where {ξjk+1 : j = 1, . . . ,Mk} is a family of independent normal
distributed random variables with mean zero and variance τσ0.

◦ Step (2): Compute the weights by

vjk+1 := exp

(

h(xjk)∆kY
c −

1

2
τ‖h(xjk)‖

2

)

,

where ∆kY
c = Y c((k + 1)τ) − Y c(kτ).

◦ Step (3): Renormalize the weights by setting

ṽjk+1 :=
vjk+1

∑Mk

j=1 v
j
k+1

.
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◦ Step (4): For each j generate a Poisson distributed random variable
mk+1

j with parameter 1/ṽjk+1. Now, the number of offspring of the

jth particle is equal to mk+1
j . Generate a new sample given by

{

x1k+1, · · · , x
1
k+1

︸ ︷︷ ︸

mk+1
1 times

, x2k+1, · · · , x
2
k+1

︸ ︷︷ ︸

mk+1
2 times

, . . . , xM
k

k+1, · · · , x
Mk

k+1
︸ ︷︷ ︸

mk+1

Mk
times

}

.

Compute

Mk+1 :=

Mk
∑

j=1

mk+1
j .

◦ Step (5): If k < nl, replace k with k + 1 and go back to Step (1).
Otherwise, continue to Step (E).

• Step E: Dice a sample of {∆lL
1
1,∆lL

2
1,∆lL

3
1, . . . ,∆lL

Mnl

1 }, knowing the
copula and the jumps of L2 at time Tl, i.e. ∆lL2. Replace xjnl

by xjnl
+

σ1(x
j
nl
)∆lL

j
1 for j = 1, . . . ,Mnl .

• Step F: If nlτ ≥ T , replace l with l + 1 and go back to Step (C).
Otherwise, continue to Step (G).

• Step G: Compute the feedback estimator at time t = kτ of the process
X is given by

X̂FB

app
(kτ) :=

1

Mk

Mk
∑

j=1

x̂jk, (37)

the estimator of the feedback density process πapp
k at time t = τk is given

by

π̂app
k :=

1

Mk

Mk
∑

j=1

δ
x̂
j
k

. (38)

Under Assumption 3.1, the distribution of the sample

{x1k, x
2
k, · · · , x

Mk

k }

in Step (4) of Algorithm 2 has smaller p moments.
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Note that Algorithm 2 is constructed by closely following the branching
particle system introduced in [13]. The main difference is first the feedback with
the correction factor and the branching, i.e., the calculations of the offspring in
Step (8). Here, we applied a different method. In particular, we generated the
random number mk

j as follows. Let

λk
j = vkj × ♯{number of particles at time i}.

Then mk
j is Poisson distributed with parameter λk

j ; In particular,

P

(

mk
j = l

)

= exp(−λk
j )

(λk
j )

l

l!
.

4.1. The numerical implementation and some
examples

In the following, we give three examples to illustrate the applicability. In the
example we modelled the dependence structure of the jumps by a Gumbel
copula defined by

C(u1, u2) = exp

(

−
[

(− lnu1)
θ + (− lnu2)

θ
] 1

θ

)

,

where u1, u2 ∈ [0, 1], θ ∈ (1,∞). Note, the Gumbel copula is a parametrised
copula; the parameter may change the dependence structure of the copula. Let
the jumps be described by Cθ. Then, if θ is closed to one, the jumps of L1 and
L2 are nearly independent, if θ is large, the jumps are closed. In fact, let us
introduce the upper tail dependence λU for two random variable X1 and X2

with distributions F1 and F2 by

λU = lim
u→1

P (X1 > F←1 (u) | X2 > F←2 (u) ) ,

in case the limit exists. Then, in case the dependence structure of X1 and X2

is given by the Gumbel copula with parameter θ, the upper tail dependence
λU is given by 2− 2

2
θ . This possibility of considering different tail dependences

was the motivation to take the Gumbel copula. For details on how to generate
random variable conditioned by a copula, we refer to the appendix A and to
the books [9, 60, 23].
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φ
l

mg cos(φ)

mg sin(φ)

Fd = b l dφ
dt

Figure 1: The force diagram of the simple damped pendulum due to
air drag

4.1.1. A mathematical pendulum randomly kicked

A pendulum is a body suspended from a fixed support so that it swings freely
back and forth under the influence of gravity. When a pendulum is displaced
sideways from its resting, equilibrium position, it is subjected to the restoring
force due to gravity that will accelerate it back toward the equilibrium position.
Now, we introduce a pendulum being damped due to air drag. As depicted in
Fig. 1 below, the model depends to a force Fd = bl dφ

dt
where b is the drag

coefficient for a laminar flows, m is mass of object and l is length of string.
The governing equation of the simple damped pendulum due to air drag is
φ̈+ b

m
φ̇+ g

l
sin(φ) = 0.

In this study, we are interested in a damped pendulum with friction per-
turbed by L1 = {L1(t) : t ≥ 0}. The governing equation is given by







φ̈(t) + bφ̇(t) + g
l
sin(φ(t)) = σL1

L1(t),

y(t) =
∫ t

0 h(φ(s)) ds + σL2
L2(t),

φ(0) = 0, φ̇(0) = 0.

Let the state X = (x1, x2)
T ∈ R2 represent (φ, φ̇) where φ is the angular

displacement. The governing equation of a pendulum with friction perturbed
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Figure 2: The state process ((A) x1 and (B) x2) of (39) and the
estimates using Algorithm 1 with different eigenvalues (Λ).

by L1 = {L1(t) : t ≥ 0} is given by






dX(t) =

(
dx1(t)
dx2(t)

)

=

(
0 1

0 − b
m

)(
x1(t)
x2(t)

)

dt

+

(
0

− g
l
sin(x1(t))

)

dt

+

(
0

σL1

)

dL1(t),

y(t) =
∫ t

0 h(x1(s)) ds + σL2
L2(t),

x1(0) = 0, x2(0) = 0.

(39)

In our numerical experiments, we fixed the parameter σL1
= σL2

= 1,
g = 10, l = 20, m = 10, b = 4 and for the function h we took h(x) = x.
Moreover, we kicked the pendulum randomly by a compound Poisson process.
The force of the kick was Lognormal distributed with mean 0.2 and standard
deviation 0.9. The dependence structure of the size of the jumps is modelled
by a Gumbel copula with parameter θ = 5, the waiting time between the jumps
was exponential distribution by the parameter λ = 0.5.

In Figure 2, we present an estimator of the state process x1 and the state
process x2. We simulate the model with the samples size N = 70. The time
step is τ = 0.025. To compare the impact of the feedback, we chose different
eigenvalues (Λ = {λ1, λ2, λ3}) of Eq. 21. Here, one can observe that if the
eigenvalues are increased, then the error decreases.
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Figure 3: The state process ((A) x1 and (B) x2) of (39) and the esti-
mates with some Gaussian noise to the state process using Algorithm
1 with different eigenvalues (Λ).
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Figure 4: The state process ((A) x1 and (B) x2) of (39) and the
estimates with some Gaussian noise to the observer using Algorithm
1 with different eigenvalues (Λ).

To observe how the process evolves with a Gaussian perturbation we added
some Gaussian noise first to the observation and then to the process itself. In
particular, in Figure 3 we had as governing equation φ̈(t)+bφ̇(t)+ g

l
sin(φ(t)) =

σL1
L1(t) + σW1

dW1 with σW1
= 0.1, in Figure 4 we had y(t) =

∫ t

0 h(φ(s)) ds +
σL2

L2(t) + σW2
dW2 with σW2

= 0.1. One can see, in Figure 3, Algorithm
1 works fine. If the Gaussian noise is part of the observation, the feedback
estimator starts to overshoot and the quality decreases.
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Figure 5: The state process ((A) x1 and (B) x2) of (40) and the
estimates using Algorithm 2 with different eigenvalues (Λ).
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Figure 6: The estimation error of state process (40) ((A) x1 and (B)
x2) using Algorithm 2 with the eigenvalues (Λ = {λ, λ, λ}).

To improve the quality of the feedback estimator by using the particle filter
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described in Algorithm 2. In particular, we consider the following system

dX(t) =

(
dx1(t)
dx2(t)

)

=

(
0 1

0 − b
m

)(
x1(t)
x2(t)

)

dt

+

(
0

− g
l
sin(x1(t))

)

dt

+

(
0

σL1

)

dL1(t) +

(
0

σW1

)

dW1(t),

y(t) =
∫ t

0 h(x1(s)) ds + σL2
L2(t)

+
∫ t

0 σW2
dW2(t),

x1(0) = 0, x2(0) = 0.

(40)

The parameter of the following simulation are given by σL1
= σL2

= 1, σW1
=

σW2
= 0.1. The samples size N is 70 and a single time τ step is 0.025.

To compare the impact of the feedback, we chose different eigenvalues (Λ =
{λ1, λ2, λ3}) of Eq. 21.

To verify the impact of the feedback on the quality of the estimator, we
compare in Figure 5 the state process and its estimator with different eigenval-
ues (Λ). One can see that if for Λ = {−10,−10,−10} the error has a minimum.
If the eigenvalue is too high, the system starts to overshoot, and the estimator
is unreliable. This can be observed in Figure 6.

In Lemma 1 we have seen that the variance of the feedback estimator de-
creases if the sample size increases. To verify this by numerical simulations,
we calculated the feedback estimator varying the number of particles M . In
Figure 7, we see that already with small sample size, the quality of the feedback
estimator is high. Comparing the feedback estimator by an estimator without
feedback, we see in Figure 8 that in order to get the same quality, the samples
size has to be chosen quite high. Finally, in the last picture (Figure 9), we
illustrate the impact of branching of the particles on the estimator.

4.1.2. A single-link flexible joint robot

Consider the model of a single link robot with a flexible joint rotating in a
vertical plane [3]. As depicted in Fig. 10 below, the nonlinearities are due to
joint flexibility, modelled as a stiffening torsional spring, and the gravitational
force.

Let x1 and x2 are the link displacement and its velocity, respectively; x3
and x4 are the rotor displacement and its velocity, respectively. The governing
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Figure 7: The state process ((A) x1 and (B) x2) of (40) and the
estimates using Algorithm 2 with feedback variable and different
number of particles (M).
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Figure 8: The state process ((A) x1 and (B) x2) of (40) and the
estimates using Algorithm 2 without feedback variable and with dif-
ferent number of particles (M).

equation of a single-link flexible joint robot with friction perturbed by L1 =
{L1(t) : t ≥ 0} is given by
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Figure 9: The state process ((A) x1 and (B) x2) of (40) and the es-
timates using Algorithm 2 with (and without) branching of particles
steps.
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Figure 10: The flexible joint robot link
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





dX(t) =







dx1(t)
dx2(t)
dx3(t)
dx4(t)







=







0 1 0 0

− k
J1

0 k
J1

0

0 0 0 1
k
J2

0 − k
J2

0













x1(t)
x2(t)
x3(t)
x4(t)







dt

+







0

−mgl
J1

sin(x1(t))

0
0







dt

+







0
0
0

σL1







dL1(t),

y(t) =

t∫

0

h(x1(s)) ds + σL2
L2(t),

X(0) =
(
1 1 1 1

)T
,

(41)

where J1, J2, k, l, m and g are the link inertia, the rotor inertia, the elastic con-
stant, the position of the center of mass, the mass, and the gravity acceleration,
respectively.

In our numerical experiments, we fixed the parameter σL1
= σL2

= 1,
g = 10, J1 = 30 Kg/m2, J2 = 30 Kg/m2, k = 1 N/m, l = 1 m, m = 0.5 Kg,
g = 10 m/s2 and for the function h we took h(x) = x. Moreover, the dependence
structure of the jumps size was modelled by a Gumbel copula with parameter
θ = 5, the waiting time between the jumps was exponential distritbuted by
parameter λ = 5.

In Figure 11, we present an estimator of the state process. We simulate the
model with the samples size is 70 and a single time step is 0.01. To compare
the impact of the feedback, we chose different eigenvalues (Λ = {λ1, · · · , λ5})
of Eq. 21. Here, one can observe that if the eigenvalues are increased, then the
error decreases.

To observe how the process evolves with a Gaussian perturbation, we added
some Gaussian noise first to the observation and then to the process itself. In
particular, in Figure 12 we had as governing equation
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Figure 11: The state process ((A) x1, (B) x2, (C) x3 and (D) x4) of
(41) and the estimates using Algorithm 1 with different eigenvalues
(Λ).
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dX(t) =







dx1(t)
dx2(t)
dx3(t)
dx4(t)







=







0 1 0 0

− k
J1

0 k
J1

0

0 0 0 1
k
J2

0 − k
J2

0













x1(t)
x2(t)
x3(t)
x4(t)







dt

+







0
0
0

σW1







dW1(t)

+







0
0
0

σL1







dL1(t)

+







0

−mgl
J1

sin(x1(t))

0
0







dt,

where σW1
= 1. In Figure 13 we had y(t) =

∫ t

0 x1(s) ds + σL2
L2(t) + σW2

dW2

with σW2
= 1. One can see, in Figure 12, Algorithm 1 works fine. If the Gaus-

sian noise is part of the observation, the feedback estimator starts to overshoot
and the quality decreases.

To improve the quality of the feedback estimator by using the particle filter



852 E. Hausenblas, K. Fahim, P.W. Fernando

described in Algorithm 2. In particular, we consider the following system






dX(t) =







dx1(t)
dx2(t)
dx3(t)
dx4(t)







=







0 1 0 0

− k
J1

0 k
J1

0

0 0 0 1
k
J2

0 − k
J2

0













x1(t)
x2(t)
x3(t)
x4(t)







dt

+







0
0
0

σW1







dW1(t)

+







0

−mgl
J1

sin(x1(t))

0
0







dt

+







0
0
0

σL1







dL1(t),

y(t) =

t∫

0

x1(s) ds + σL2
L2(t) +

∫ t

0
σW2

dW2(t),

X(0) =
(
1 1 1 1

)T
,

(42)

The parameter of the following simulation are given by σL1
= σL2

= 1, σW1
=

σW2
= 1. The samples size is 70 and a single time step is 0.01. To compare the

impact of the feedback, we chose different eigenvalues (Λ = {λ1, λ2, λ3, , λ4, , λ5})
of Eq. 21.

To verify the impact of the feedback on the quality of the estimator, we com-
pare in Figure 14 the state process and its estimator with different eigenvalues
(Λ). One can see that Λ = {λ, λ, λ, λ} with λ = −0.7 is the value with the
smallest error. Again, if the eigenvalue is too high, the system starts to over-
shoot. Furthermore, Figure 15 shows us that there is a point of overshooting
such that the result is not reliable.

In Lemma 1 we have seen that the variance of the feedback estimator de-
creases if the absolute value of increases. To verify this by numerical simu-
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Figure 12: The state process ((A) x1, (B) x2, (C) x3 and (D) x4) of
(41) and the estimates with some Gaussian noise to the state process
using Algorithm 1 with different eigenvalues (Λ).

lations, we calculated the feedback estimator varying the sample size of the
particles (M). In Figure 16, we see that already with small sample size, the
quality of the feedback estimator is high. Comparing the feedback estimator
by an estimator without feedback, we see in Figure 17 that in order to get the
same quality, the samples size has to be chosen quite high. Finally, in the last
picture (Figure 18), we illustrate how branching effects the estimator.
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Figure 13: The state process ((A) x1, (B) x2, (C) x3 and (D) x4)
of (41) and the estimates with some Gaussian noise to the observer
using Algorithm 1 with different eigenvalues (Λ).

4.1.3. Van der Pol oscillator

The Van der Pol is a non-conservative oscillator with non-linear damping. The
governing equation of the Van der Pol oscillation is φ̈ − µ(1 − φ2)φ̇ + φ = 0,
where φ is the voltage across the capacitor and µ is a damping indicator. Here,
we are interested in the simple Van der Pol model with friction perturbed by



A PARTICLE FILTER FOR NONLINEAR... 855

0 1 2 3 4 5 6 7 8 9 10

t

0

20

40

60

80

100

120

140

s
ta

te
 p

ro
c
e
s
s
 x

1
 a

n
d
 e

s
ti
m

a
te

state process x
1

estimate x
1
 with ={-0.3,-0.3,-0.3,-0.3,-0.3} and the relative error = 0.0370

estimate x
1
 with ={-0.5,-0.5,-0.5,-0.5,-0.5} and the relative error = 0.0230

estimate x
1
 with ={-0.7,-0.7,-0.7,-0.7,-0.7} and the relative error = 0.0187

(a)

0 1 2 3 4 5 6 7 8 9 10

t

0

5

10

15

20

25

30

35

40

45

50

s
ta

te
 p

ro
c
e

s
s
 x

2
 a

n
d

 e
s
ti
m

a
te

state process x
2

estimate x
2
 with ={-0.3,-0.3,-0.3,-0.3,-0.3} and the relative error = 0.0662

estimate x
2
 with ={-0.5,-0.5,-0.5,-0.5,-0.5} and the relative error = 0.0488

estimate x
2
 with ={-0.7,-0.7,-0.7,-0.7,-0.7} and the relative error = 0.0374

(b)

0 1 2 3 4 5 6 7 8 9 10

t

0

100

200

300

400

500

600

700

800

900

1000

s
ta

te
 p

ro
c
e
s
s
 x

3
 a

n
d
 e

s
ti
m

a
te

state process x
3

estimate x
3
 with ={-0.3,-0.3,-0.3,-0.3,-0.3} and the relative error = 0.0794

estimate x
3
 with ={-0.5,-0.5,-0.5,-0.5,-0.5} and the relative error = 0.0695

estimate x
3
 with ={-0.7,-0.7,-0.7,-0.7,-0.7} and the relative error = 0.0558

(c)

0 1 2 3 4 5 6 7 8 9 10

t

0

20

40

60

80

100

120

140

160

180

s
ta

te
 p

ro
c
e
s
s
 x

4
 a

n
d
 e

s
ti
m

a
te

state process x
4

estimate x
4
 with ={-0.3,-0.3,-0.3,-0.3,-0.3} and the relative error = 0.0861

estimate x
4
 with ={-0.5,-0.5,-0.5,-0.5,-0.5} and the relative error = 0.0837

estimate x
4
 with ={-0.7,-0.7,-0.7,-0.7,-0.7} and the relative error = 0.0746

(d)

Figure 14: The state process ((A) x1, (B) x2, (C) x3 and (D) x4) of
(42) and the estimates using Algorithm 2 with different eigenvalues
(Λ).

the Levy process denoted by L1 = {L1(t) : t ≥ 0}. The equation is given by







φ̈− µ(1− φ2)φ̇+ φ = σL1
L1(t),

y(t) =
∫ t

0 h(φ(s)) ds + σL2
L2(t),

φ(0) = φ0, φ̇(0) = φ̇0.

(43)

In order to change the system (43) to a system of first order, let us introduce
the following variables. Let us denote (φ, φ̇) by X = (x1, x2)

T ∈ R2. The
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Figure 15: The estimation error of state process (42) ((A) x1, (B)
x2, (C) x3 and (D) x4) using Algorithm 2 with the eigenvalues (Λ =
{λ, λ, λ, λ, λ}).

governing equation with friction perturbed by L1 = {L1(t) : t ≥ 0} is given by






dX(t) =

(
dx1(t)
dx2(t)

)

=

(
0 1
−1 0

)(
x1(t)
x2(t)

)

dt

+

(
0

−µ(x1(t)
2 − 1)x2(t)

)

dt

+

(
0

σL1

)

dL1(t),

y(t) =
∫ t

0 h(x1(s)) ds + σL2
L2(t),

x1(0) = φ0, x2(0) = φ̇0.

(44)
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Figure 16: The state process ((A) x1, (B) x2, (C) x3 and (D) x4)
of (42) and the estimates using Algorithm 2 with feedback variable
and different number of particles M .

In our numerical experiments, we fixed the parameter µ = 0.4. The initial
data φ(0) = 0.35, φ̇(0) = 0 and for the function h we took h(x) = x. Moreover,
the dependence structure of the jumps size was modelled by a Gumbel copula
with parameter θ = 5, the waiting time between the jumps was exponential
distritbuted by parameter λ = 5.

In Figure 19, we present an estimator of the state process. We simulate the
model with the samples size is 70 and a single time step is 0.01. To compare
the impact of the feedback, we chose different eigenvalues (Λ = {λ1, λ2, λ3}) of
Eq. 21. Here, one can observe that if |Λ| is increased, the error decreases.

To observe how the process evolves with a Gaussian perturbation we added



858 E. Hausenblas, K. Fahim, P.W. Fernando

0 1 2 3 4 5 6 7 8 9 10

t

0

20

40

60

80

100

120

140

s
ta

te
 p

ro
c
e
s
s
 x

1
 a

n
d
 e

s
ti
m

a
te

state process x
1

estimate x
1
 with M=1 and the relative error = 0.1582

estimate x
1
 with M=5 and the relative error = 0.0992

estimate x
1
 with M=10 and the relative error = 0.1184

estimate x
1
 with M=15 and the relative error = 0.0991

estimate x
1
 with M=20 and the relative error = 0.0998

estimate x
1
 with M=50 and the relative error = 0.0977

estimate x
1
 with M=100 and the relative error = 0.0978

estimate x
1
 with M=200 and the relative error = 0.0906

(a)

0 1 2 3 4 5 6 7 8 9 10

t

0

5

10

15

20

25

30

35

40

45

50

s
ta

te
 p

ro
c
e

s
s
 x

2
 a

n
d

 e
s
ti
m

a
te

state process x
2

estimate x
2
 with M=1 and the relative error = 0.1308

estimate x
2
 with M=5 and the relative error = 0.0937

estimate x
2
 with M=10 and the relative error = 0.1099

estimate x
2
 with M=15 and the relative error = 0.0951

estimate x
2
 with M=20 and the relative error = 0.0959

estimate x
2
 with M=50 and the relative error = 0.0949

estimate x
2
 with M=100 and the relative error = 0.0949

estimate x
2
 with M=200 and the relative error = 0.0887

(b)

0 1 2 3 4 5 6 7 8 9 10

t

0

100

200

300

400

500

600

700

800

900

1000

s
ta

te
 p

ro
c
e

s
s
 x

3
 a

n
d

 e
s
ti
m

a
te

state process x
3

estimate x
3
 with M=1 and the relative error = 0.1053

estimate x
3
 with M=5 and the relative error = 0.0896

estimate x
3
 with M=10 and the relative error = 0.1005

estimate x
3
 with M=15 and the relative error = 0.0907

estimate x
3
 with M=20 and the relative error = 0.0917

estimate x
3
 with M=50 and the relative error = 0.0926

estimate x
3
 with M=100 and the relative error = 0.0922

estimate x
3
 with M=200 and the relative error = 0.0871

(c)

0 1 2 3 4 5 6 7 8 9 10

t

0

20

40

60

80

100

120

140

160

180
s
ta

te
 p

ro
c
e
s
s
 x

4
 a

n
d
 e

s
ti
m

a
te

state process x
4

estimate x
4
 with M=1 and the relative error = 0.0976

estimate x
4
 with M=5 and the relative error = 0.0929

estimate x
4
 with M=10 and the relative error = 0.0967

estimate x
4
 with M=15 and the relative error = 0.0919

estimate x
4
 with M=20 and the relative error = 0.0936

estimate x
4
 with M=50 and the relative error = 0.0975

estimate x
4
 with M=100 and the relative error = 0.0963

estimate x
4
 with M=200 and the relative error = 0.0927

(d)

Figure 17: The state process ((A) x1, (B) x2, (C) x3 and (D) x4) of
(42) and the estimates using Algorithm 2 without feedback variable
and with different number of particles (M).

some Gaussian noise first to the observation and then to the process itself. In
particular, in Figure 20 we had as governing equation φ̈ − µ(1 − φ2)φ̇ + φ =
σL1

L1(t)+σW1
dW1 with σW1

= 0.1, in Figure 21 we had y(t) =
∫ t

0 h(φ(s)) ds+
σL2

L2(t) + σW2
dW2 with σW2

= 0.2. One can see, in Figure 20, Algorithm
1 works fine. If the Gaussian noise is part of the observation, the feedback
estimator starts to overshoot.

To improve the quality of the feedback estimator by using the particle filter
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Figure 18: The state process ((A) x1, (B) x2, (C) x3 and (D) x4)
of (42) and the estimates using Algorithm 2 with (and without)
branching of particles steps.

described in Algorithm 2. In particular, we consider the following system






dX(t) =

(
dx1(t)
dx2(t)

)

=

(
0 1
−1 0

)(
x1(t)
x2(t)

)

dt

+

(
0

−µ(x1(t)
2 − 1)x2(t)

)

dt

+

(
0

σL1

)

dL1(t) +

(
0

σW1

)

dW1(t),

y(t) =
∫ t

0 h(x1(s)) ds + σL2
L2(t)

+
∫ t

0 σW2
dW2(t),

x1(0) = φ0, x2(0) = φ̇0.

(45)



860 E. Hausenblas, K. Fahim, P.W. Fernando

0 1 2 3 4 5 6 7 8 9 10

t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

s
ta

te
 p

ro
c
e
s
s
 x

1
 a

n
d
 e

s
ti
m

a
te

state process x
1

estimate x
1
 with ={-3.5,-3.5,-3.5} and the relative error = 0.0244

estimate x
1
 with ={-5.5,-5.5,-5.5} and the relative error = 0.0125

estimate x
1
 with ={-7.5,-7.5,-7.5} and the relative error = 0.0078

(a)

0 1 2 3 4 5 6 7 8 9 10

t

-2

-1

0

1

2

3

4

5

6

7

s
ta

te
 p

ro
c
e

s
s
 x

2
 a

n
d

 e
s
ti
m

a
te

state process x
2

estimate x
2
 with ={-3.5,-3.5,-3.5} and the relative error = 0.1240

estimate x
2
 with ={-5.5,-5.5,-5.5} and the relative error = 0.1178

estimate x
2
 with ={-7.5,-7.5,-7.5} and the relative error = 0.1089

(b)

Figure 19: The state process ((A) x1 and (B) x2) of (44) and the
estimates using Algorithm 1 with different eigenvalues (Λ).
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Figure 20: The state process ((A) x1 and (B) x2) of (44) and the
estimates with some Gaussian noise to the state process using Algo-
rithm 1 with different eigenvalues (Λ).

The parameter of the following simulation are given by σL1
= σL2

= 0.25,
σW1

= 0.1, σW2
= 0.2, φ(0) = 0.35, and φ̇(0) = 0. The samples size is 70, a

single time step is 0.01 and for the function h we took h(x) = x. To compare
the impact of the feedback, we chose different eigenvalues (Λ = {λ1, λ2, λ3}) of
Eq. 21.

To verify the impact of the feedback on the quality of the estimator, we
compare in Figure 22 the state process and its estimator with different eigen-
values (Λ). One can see that Λ = {−3,−3,−3} is the eigenvalue with the
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Figure 21: The state process ((A) x1 and (B) x2) of (44) and the
estimates with some Gaussian noise to the observer using Algorithm
1 with different eigenvalues (Λ).
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Figure 22: The state process ((A) x1 and (B) x2) of (44) and the
estimates using Algorithm 2 with different eigenvalues (Λ).

smallest error. If the eigenvalue is too high, the system starts to overshoot, and
the estimator is unreliable. Furthermore, Figure 23 shows us that there is a
point of overshooting.

In Figure 24, we see that already with small sample size, the quality of the
feedback estimator is high. Again, comparing the feedback estimator by an
estimator without feedback, we see in Figure 25 that in order to get the same
quality, the samples size has to be chosen quite high. Finally, in the last picture
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Figure 23: The estimation error of state process (44) ((A) x1 and
(B) x2) using Algorithm 2 with the eigenvalues (Λ = {λ, λ, λ}).
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Figure 24: The state process ((A) x1 and (B) x2) of (44) and the
estimates using Algorithm 2 with feedback variable and different
number of particles (M).

(Figure 26), we illustrate how branching effects the estimator.

5. Conclusion

As one can see from our examples that the feedback estimator provides better
performance than using only probabilistic methods by itself. First of all, one
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Figure 25: The state process ((A) x1 and (B) x2) of (44) and the
estimates using Algorithm 2 without feedback variable and with dif-
ferent number of particles (M).
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Figure 26: The state process ((A) x1 and (B) x2) of (44) and the es-
timates using Algorithm 2 with (and without) branching of particles
steps.

can use a smaller sample to get the same quality. The reason is that the variance
of the feedback estimator is smaller than the variance of the estimator without
any feedback. However, one can see at the examples, that, if the feedback is
too strong, the systems start to overshoots the quality of the estimator gets
unreliable. Therefore the feedback has to be chosen carefully.
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A. Copulas - a short overview

Copulas are popular to describe the dependence structure of non–Gaussian
random variables. One of the main advantages is that one can model and
estimate the distribution of random vectors by estimating marginals and copulas
separately. In this way, a copula can be seen as a multivariate cumulative
distribution function for which the marginal probability distribution of each
variable is uniform. For an introduction to copulas we refer to the books [9, 60,
23].

Definition 2. A 2–dimensional copula is a function

C : [0, 1]d → [0, 1]

such that

• ∀u ∈ [0, 1], C(u, 1) = C(1, u) = u,

• ∀ui ∈ [0, 1], C(u1, u2) = 0 if at least one of the ui’s equals zero,

• C is grounded and n-increasing, i.e., the C-volume of every box whose
vertices lie in [0, 1]2 is positive.

In order to explain shortly the concept of copula, let (X1,X2) be a couple
of two d–dimensional random vectors. Let us denote the distribution of Xi by
Fi, i = 1, 2. Assuming that F1 and F2 are absolutely continuous, the random
variables F1(X1)) and F2(X2)) are uniformly distributed on [0, 1]. Besides,

(F (X1), F (X2))

has uniform distributed margins. Now, for any random vector (X1,X2) contin-
uous marginales distribution functions Fi, the function

C : [0, 1]2 → [0, 1]
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such that

C(F (x1), F (x2)) = P (X1 ≤ x1,X2 ≤ x2) , .

is called copula. Here, x ≤ y for two vectors x = (x1, . . . , xd) and y =
(y1, . . . , yd) means x1 ≤ y1, . . . , xd ≤ yd. Since we need here only copulas
for two random variable, we restrict ourselves here to two dimensional copulas.
By Sklar’s Theorem one can find for any multivariate distribution a copula C
with

F (x1, x2) = C(F1(x1), F2(x2)), ∀(x1, x2) ∈ R2.

Remark 3. From this formula one can easily get the conditional density,
given by

P (X1 = x1 | X2 = x2) =
P (X1 = x1,X2 = x2)

P (X2 = x2)
(46)

c(F−11 (x1), F
−1
2 (x2))

c(1, F−12 (x2))
f1(x1), , x1, x2 ∈ Rd. (47)

where

c(u1, u2) :=
d2

du1 du2
C(u1, u2)

and f1 denotes the density of F1.

Different kind of copulas are e.g. the independence copula for pairs defined
by

C(u1, u2) = u1u2, u1, u2 ∈ [0, 1],

the comonotonicity copula defined by

C(u1, u2) = min(u1, u2), u1, u2 ∈ [0, 1],

the Gumbel copula defined for θ ∈ [1,∞) by

C(u1, u2)

= exp

(

−
[

(− lnu1)
θ + (− ln u2)

θ
] 1

θ

)

, u1, u2 ∈ [0, 1],

and the Clayton copula defined for θ ∈ (θ,∞) by

C(u1, u2) = max
(

[u−θ1 + u−θ2 − 1]−
1
θ , 0
)

, u1, u2 ∈ [0, 1].
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The parameter θ > 0 determines the dependence of the jump sizes. Larger
values of θ indicate a stronger dependence, smaller values of θ indicate in-
dependence. In particular, if θ = 1 one obtains for the Gumbel copula the
independence copula, and for θ → ∞ converges the Gumbel copula to the
comonotonic copula. In the limit θ → 0 the Clayton copula converges to the
independence copula, and for θ → ∞ the Clayton copula converges to the
comonotonic copula. The Gumbel copula turns out to have upper tail depen-
dence. This significate, roughly spoken, ifX1 andX2 are defined by its marginal
distribution and a Gumbel copula, there is a strong tendency for X2 to be ex-
treme, if X1 is extreme and vice versa. The Clayton copula turns out to have
a lower tail dependence.

A.1. Simulation of Copulas

Given a two–dimensional copula C and a uniformly distributed random variable
U1, then one can easily simulate a random variable U2, such that

P (U2 ≤ u1 | U2 ≤ u2) = C(u1, u2), u1, u2 ∈ [0, 1],

by acceptation–rejection method (see e.g. book [46]). To illustrate another way,
let us define the function G given by

Gũ(u) :=
d

du2
C(u, u2)

∣
∣
u2=ũ

, u, ũ ∈ [0, 1].

If G is invertible, generate a on [0, 1] uniform distributed random variable U2

and put Y := G−1U2
(U1). For further details on simulating copulas, we refer to

[23].
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