ON THE CONSTRUCTION OF PERFECT CODES
FOR n-DIMENSIONAL INTERLEAVING

Abstract

The authors propose an $n$-dimensional interleaving technique which spreads a cluster of errors having a quasicircular shape. Consequently simple one-dimensional random-error-correcting codes can be used to correct this kind of cluster instead of the more complex $n$-dimensional burst-error-correcting codes. Moreover let $p\geq 2$ be a positive integer, whenever $n\neq 1 \ mod \ 3$, the corresponding $n$-dimensional interleaving technique provides a perfect code. Also, whenever $n=3p-2=1 \ mod \ 3$, the corresponding $n$-dimensional interleaving technique provides neither a perfect code nor a quasi-perfect code.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 3
Year: 2021

DOI: 10.12732/ijam.v34i3.5

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] C. de Almeida and R. Palazzo Jr., Efficient two-dimensional interleaving technique by use of the set partitioning concept, IET Eletronics Letters, 32, No 6 (1996), 538-539.
  2. [2] S. Lin and D.J. Costello Jr., Error Control Coding, Prentice Hall (2004).
  3. [3] C.C. Trinca Watanabe, J.-C. Belfiore, E.D. de Carvalho, J. Vieira Filho, R. Palazzo Jr. and R.A. Watanabe, Construction of complex nested ideal lattices for complex-valued channel quantizattion, International Journal of Applied Mathematics, 31, No 4 (2018), 549-585; doi: 10.12732/ijam.v31i4.4.
  4. [4] C.C. Trinca Watanabe, J.-C. Belfiore, E.D. de Carvalho, J. Vieira Filho and R.A. Watanabe, Construction of nested real ideal lattices for interference channel coding, International Journal of Applied Mathematics, 32, No 2 (2019), 295-323; doi: 10.12732/ijam.v32i2.11.
  5. [5] H. Cohn, Advanced Number Theory, Dover Publications, New York (1980).
  6. [6] M. Blaum, P.G. Farrell and H.C.A. Van Tilborg, Handbook of Coding Theory, Elsevier, Amsterdam (1998).
  7. [7] W. Zhang and J.K. Wolf, A Class of burst error-correcting quasi-cyclic codes, IEEE Transactions on Information Theory, 34, No 3 (1988), 463- 479; doi: 10.1109/18.6026.
  8. [8] A.Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics, 303, No 1 (2003), 2-30.
  9. [9] C.D. Albuquerque, R. Palazzo Jr. and E.B. da Silva, Construction of new toric quantum codes, Contemporary Mathematics, 518, No 1 (2010), 1-10.
  10. [10] C.C. TrincaWatanabe, J.-C. Belfiore, E.D. de Carvalho and J. Vieira Filho, E8-Lattice via the cyclotomic field Q24 , International Journal of Applied Mathematics, 31, No 1 (2018), 63-71; doi: 10.12732/ijam.v31i1.6.
  11. [11] G. Ungerboeck, Channel coding with multilevel/phase signals, IEEE Transactions on Information Theory, 28, No 1 (1982), 55-67; doi: 10.1109/TIT.1982.1056454.
  12. [12] S.W. Golomb and L.R. Welch, Perfect codes in the lee metric and the packing of polyominoes, SIAM Journal on Applied Mathematics, 18, No 2 (1970), 302-317; doi: 10.1137/0118025.
  13. [13] S.W. Golomb and E.C. Posner, Rook domains, latin squares, affine planes and error-distributing codes, IEEE Transactions on Information Theory, 10, No 3 (1964), 196-208; doi: 10.1109/TIT.1964.1053680.
  14. [14] C.Q. Queiroz, C. Camarero, C. Martinez and R. Palazzo Jr., Quasiperfect codes from cayley graphs over integer rings, IEEE Transactions on Information Theory, 59, No 9 (2013), 5905-5916; doi: 10.1109/TIT.2013.2266398.
  15. [15] F. Oggier, G. Rekaya, J.-C. Belfiore and E. Viterbo, Perfect space-time block codes, IEEE Transactions on Information Theory, 52, No 9 (2006), 3885-3902; doi: 10.1109/TIT.2006.880010.
  16. [16] C.C. Trinca, E.D. de Carvalho, J. Vieira Filho and A.A. Andrade, On the construction of perfect codes from HEX signal constellations, Journal of the Franklin Institute, 349, No 10 (2012), 3060-3077; doi: 10.1016/j.jfranklin.2012.09.007.
  17. [17] C. Alves, W.L.S. Pinto and A.A. Andrade, Well-rounded lattices via polynomials with real roots, International Journal of Applied Mathematics, 33, No 4 (2020), 663-672; doi: 10.12732/ijam.v33i4.10.
  18. [18] J. Carmelo Interlando, J.O.D. Lopes and T.P. da N´obrega Neto, A new number field construction of the D4-Lattice, International Journal of Applied Mathematics), 31, No 2 (2018), 299-305; doi: 10.12732/ijam.v31i2.11.
  19. [19] J. Carmelo Interlando, A.A. Andrade, B.G. Malaxechebarr´ıa, A.J. Ferrari and R.R. de Ara´ujo, Fully-diverse lattices from ramified cyclic extensions of prime degree, International Journal of Applied Mathematics, 33, No 6 (2020), 1009-1015; doi: 10.12732/ijam.v33i6.4.