ON THE CONSTRUCTION OF PERFECT CODES
FOR n-DIMENSIONAL INTERLEAVING
Cibele Cristina Trinca1, Reginaldo Palazzo Junior2 1Federal University of Tocantins (UFT)
Department of Biotechnology
and Bioprocess Engineering
Rua Badejós, Lote 7, Chácaras 69/72
Gurupi-TO - 77402-970, BRAZIL 2State University of Campinas (UNICAMP)
Department of Telematics
Av. Albert Einstein, 400
Cidade Universitária “Zeferino Vaz”
Campinas-SP - 13081-970, BRAZIL
The authors propose an -dimensional interleaving technique which spreads a cluster of errors having a quasicircular shape. Consequently simple one-dimensional random-error-correcting codes can be used to correct this kind of cluster instead of the more complex -dimensional burst-error-correcting codes. Moreover let be a positive integer, whenever
, the corresponding -dimensional interleaving technique provides a perfect code. Also, whenever
, the corresponding -dimensional interleaving technique provides neither a perfect code nor a quasi-perfect code.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] C. de Almeida and R. Palazzo Jr., Efficient two-dimensional interleaving
technique by use of the set partitioning concept, IET Eletronics Letters,
32, No 6 (1996), 538-539.
[2] S. Lin and D.J. Costello Jr., Error Control Coding, Prentice Hall (2004).
[3] C.C. Trinca Watanabe, J.-C. Belfiore, E.D. de Carvalho, J. Vieira
Filho, R. Palazzo Jr. and R.A. Watanabe, Construction of complex
nested ideal lattices for complex-valued channel quantizattion, International
Journal of Applied Mathematics, 31, No 4 (2018), 549-585; doi:
10.12732/ijam.v31i4.4.
[4] C.C. Trinca Watanabe, J.-C. Belfiore, E.D. de Carvalho, J. Vieira Filho
and R.A. Watanabe, Construction of nested real ideal lattices for interference
channel coding, International Journal of Applied Mathematics, 32,
No 2 (2019), 295-323; doi: 10.12732/ijam.v32i2.11.
[5] H. Cohn, Advanced Number Theory, Dover Publications, New York (1980).
[6] M. Blaum, P.G. Farrell and H.C.A. Van Tilborg, Handbook of Coding Theory,
Elsevier, Amsterdam (1998).
[7] W. Zhang and J.K. Wolf, A Class of burst error-correcting quasi-cyclic
codes, IEEE Transactions on Information Theory, 34, No 3 (1988), 463-
479; doi: 10.1109/18.6026.
[8] A.Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of
Physics, 303, No 1 (2003), 2-30.
[9] C.D. Albuquerque, R. Palazzo Jr. and E.B. da Silva, Construction of new
toric quantum codes, Contemporary Mathematics, 518, No 1 (2010), 1-10.
[10] C.C. TrincaWatanabe, J.-C. Belfiore, E.D. de Carvalho and J. Vieira Filho,
E8-Lattice via the cyclotomic field Q24 , International Journal of Applied
Mathematics, 31, No 1 (2018), 63-71; doi: 10.12732/ijam.v31i1.6.
[11] G. Ungerboeck, Channel coding with multilevel/phase signals, IEEE
Transactions on Information Theory, 28, No 1 (1982), 55-67; doi:
10.1109/TIT.1982.1056454.
[12] S.W. Golomb and L.R. Welch, Perfect codes in the lee metric and the
packing of polyominoes, SIAM Journal on Applied Mathematics, 18, No 2
(1970), 302-317; doi: 10.1137/0118025.
[13] S.W. Golomb and E.C. Posner, Rook domains, latin squares, affine planes
and error-distributing codes, IEEE Transactions on Information Theory,
10, No 3 (1964), 196-208; doi: 10.1109/TIT.1964.1053680.
[14] C.Q. Queiroz, C. Camarero, C. Martinez and R. Palazzo Jr., Quasiperfect
codes from cayley graphs over integer rings, IEEE Transactions
on Information Theory, 59, No 9 (2013), 5905-5916; doi:
10.1109/TIT.2013.2266398.
[15] F. Oggier, G. Rekaya, J.-C. Belfiore and E. Viterbo, Perfect space-time
block codes, IEEE Transactions on Information Theory, 52, No 9 (2006),
3885-3902; doi: 10.1109/TIT.2006.880010.
[16] C.C. Trinca, E.D. de Carvalho, J. Vieira Filho and A.A. Andrade,
On the construction of perfect codes from HEX signal constellations,
Journal of the Franklin Institute, 349, No 10 (2012), 3060-3077; doi:
10.1016/j.jfranklin.2012.09.007.
[17] C. Alves, W.L.S. Pinto and A.A. Andrade, Well-rounded lattices via polynomials
with real roots, International Journal of Applied Mathematics, 33,
No 4 (2020), 663-672; doi: 10.12732/ijam.v33i4.10.
[18] J. Carmelo Interlando, J.O.D. Lopes and T.P. da N´obrega Neto, A new
number field construction of the D4-Lattice, International Journal of Applied
Mathematics), 31, No 2 (2018), 299-305; doi: 10.12732/ijam.v31i2.11.
[19] J. Carmelo Interlando, A.A. Andrade, B.G. Malaxechebarr´ıa, A.J. Ferrari
and R.R. de Ara´ujo, Fully-diverse lattices from ramified cyclic extensions
of prime degree, International Journal of Applied Mathematics, 33, No 6
(2020), 1009-1015; doi: 10.12732/ijam.v33i6.4.