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Abstract:  The authors propose an n-dimensional interleaving technique
which spreads a cluster of errors having a quasicircular shape. Consequently
simple one-dimensional random-error-correcting codes can be used to correct
this kind of cluster instead of the more complex n-dimensional burst-error-
correcting codes. Moreover let p > 2 be a positive integer, whenever n
1 mod 3, the corresponding n-dimensional interleaving technique provides a
perfect code. Also, whenever n = 3p — 2 = 1 mod 3, the corresponding n-
dimensional interleaving technique provides neither a perfect code nor a quasi-
perfect code.
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1. Introduction

In [1] the authors propose an efficient two-dimensional interleaving technique
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that spreads a cluster of errors having a quasicircular shape.

Thenceforth this paper aims to extend the previous work by proposing an
n-dimensional interleaving technique that spreads a cluster of errors having a
quasicircular shape. Interleaving techniques are used in channels with memory
to cope with burst errors. The combination of a (g, k,t) block code and the
interleaving results in an equivalent (¢", k¢" !, ;) interleaved block code, where
n > 3 is the dimension, ¢ = 2n + 1 is the blocklength (order of the hypertorus
which is ¢ X ¢ X ... x ¢ = ¢"), k is the number of information bits, t is the
error-correcting code capability and ¢; is the interleaved error-correcting code
capability. Note that ¢ = 2n+1 may be interpreted as the cardinality of the set
consisting of bi-orthogonal signal points (two antipodes signals per dimension
including the signal at the origin), where each signal point is viewed as a square
in 2D, a cube in 3D and a hypercube in nD. This signal set is the Lee sphere of
radius one. So far effective interleaving techniques are well known for combating
a one and two-dimensional burst of errors as is the case in data transmission
systems [2], [6], [7]. However to the best of our knowledge little is known
regarding interleaving techniques for combating n-dimensional cluster of errors,
where n > 3.

The works [1] and [6] are based on the set partitioning concept introduced
by Ungerboeck [11], however, this work is based on Golomb’s et. al. congru-
ence equation (equation (5)). As it will become clear both the set partitioning
concept (Table 3) and Golomb’s et al. congruence equation (equation (5)) are
distinct techniques leading to the same solution. For lower dimensions either
one of them may be used indistinctly. However, for higher dimensions, the
latter one is less complex.

Thereby the purpose of this work is to propose an n-dimensional interleaving
technique for spreading quasicircular clusters of errored bits. Consequently one-
dimensional random-error-correcting codes can be used to correct the spread
errors instead of the more complex n-dimensional burst-error-correcting codes.

The motivation to use this technique is related to the following applications,
among others, such as magnetic or optical data storage, where clusters of errors
can occur due to dust particles or defective regions, and in the construction
of quantum computers to overcome decoherence, a phenomenon due to the
interaction between the system and the surrounding environment, by use of
quantum error-correcting codes such as the class of toric quantum codes, 72
quantum codes [8], [9] associated with the lattice Z? or the class of T™ quantum
codes associated with the lattice Z"™. We assume that the clusters of errors have
a quasicircular shape (hypercubes) and the bits are cubic-shaped unit areas
(hyperfaces).
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Figure 1 shows the model of the n-dimensional storage system under con-
sideration.
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Figure 1: Model of an n-dimensional storage system, from [1]

Before presenting the n-dimensional interleaving technique, we consider the
corresponding three, four, and five-dimensional interleaving technique.

2. Lattices

A large class of the problems in coding theory is related to the properties of
lattices [3, 4, 10, 17, 18, 19]. A lattice is simply an array of vectors (points) that
algebraically forms a group under ordinary vector addition. This property leads
to the study of subgroups (sublattices) and coset decomposition (partitions).
An algebraic way to obtain sublattices from lattices is employing a scaled trans-
formation matrix 7. Given a lattice A, a sublattice A’ = T'A can be obtained
by transforming each vector A € A to X' € A’ according to X = T\.

Let V(A) be the volume of the Voronoi region of the

V(TA)
V(A

n-dimensional lattice A. For a sublattice A’ = TA, we have that
|det(T)|.

An essential property of a lattice is the (squared) minimum distance between
its points. The lattice we consider in this paper is the Z™. Although not as
important as the (squared) minimum distance for lattice comparisons, however,
relevant for the possible interferences is the number of nearest neighbors of any
given lattice point. Since a lattice consists of a collection of an infinite number
of points and from the fact that in applications only a finite number of points
are of interest, we define a basic cell of order ¢ as an array of g X gx---xqg = q"
points based on the Z™ lattice.
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3. Binary quadratic forms

A polynomial equation with integer coefficients is called a Diophantine equation
if the solutions are also integers. For instance, consider the polynomial equation

Aa,y) = (= y)(i 2><z>:ax2+(c+b)a:y+dy2, (1)

with a, b, ¢ and d integers associated with a given lattice A. Let V(A) be
the volume of the Voronoi region of the lattice A associated with A(x,y), let
V(TA) be the volume of the Voronoi region of the sublattice T'A and let g be
the number of cosets. The corresponding Diophantine equation can be written

* V(TA)

V(A)

From (2) we have the following case of interest:

az® 4 (c+ b)zy + dy* = = |det(T)| = gq. (2)

e a=d=1, b =c=0. In this case we have the binary quadratic form
x? + 12 = q associated with the g-ary partitioning of the lattice Z2.

The mathematical model of the first level ¢g-ary set partitioning problem for
the rectangular grid is to consider
V(TZ?)
2 2 _ _ _
in words, knowing the number of cosets, find T
To find T is equivalent to solving (3) for x and y integers. The existence
of solutions to (3) is guaranteed by the following pair of classical theorems, see

[5]:

Theorem 1. (Genus) The equation x> + y*> = q can be solved for x and
y integers with q prime if, and only if, g = 1mod4 or q = 2.

Theorem 2. (Composition) Let q be factorable by the product q1qo and
let A(2',y") = ¢1 and A(z",y") = q2. Then A(x,y) = q can be obtained by
using

A(l‘,,y/)A(x”, y//) — A($,$,/ _ y/y//’ x/y// +x”y,). (4)

When ¢ can be written as 22 + y?, we say that g is representable.
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4. Bi-dimensional interleaving

The set partitioning technique is used, in this case, to separate bits of a cluster
of errors in a 5 x 5 torus, [1]. From Theorem 1 the binary quadratic form is
22 + y? = 5 and the solutions are (£2,+1) and (£1,+2). Table 3 illustrates
the transformations leading to the 5 x 5 array, as it is shown in Table 1, and
Table 2 the code originated from them.

Table 1: Codewords of the 5 x 5 array, see Table 3

wlw| | —|o
>

Table 2: Codewords of the 5 x 5 array

Codes
Column Row
00 00
13 12
21 24
34 31
42 43

5. Three-dimensional interleaving

In this section, the goal is to separate bits of a cluster of errors in a 7 x 7 x 7
hypertorus.

An n-space signal point has 2n neighbors signal points within a Lee distance
one from it. Geometrically we may visualize a Lee sphere of radius 1 in n
dimensions as a central hypercube which has 2n hyperfaces to which another
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hypercube has been affixed to each of its hyperfaces. The three-dimensional
Lee sphere of radius one consists of hepta cubes, as shown in Fig. 2.

=

L

—V

Figure 2: 3-dimensional Lee sphere of radius 1, from [12]

The following theorem establishes a single-error-correcting code in dimen-
sion three having 49 codewords.

Theorem 3. ([12], p. 306) 49 of the heptacubes shown in Fig. 2 can be
used to close-pack the 7 x 7 x 7 hypertorus.

Proof. Specifically we look at a typical 7 x 7 cross section of the solution,
shown in Fig. 3:

The cross-sections of the heptacube will be either X-pentominoes or single
squares. In the cross-section shown in Fig. 3 we see seven X-pentominoes and
seven squares labeled A and seven squares labeled B. The A’s are bottoms
of heptacubes whose centers are in the plane above and the B’s are tops of
heptacubes protruding upward from the plane below. Since the seven A’s are
systematically translated (1 unit to the northwest) from the X-pentominoes
centers, we are assured that in the next cross-section above the one we are
examining, the X-pentomino sections fit together correctly. Similarly, the seven
B’s are systematically translated (1 unit to the southeast) from the seven X-
pentominoes’ centers and are, therefore, consistent as tops of heptacubes from
the layer below. Finally, since seven is a prime, it is easy to see that these
translations must lead to a periodicity of 7 in the third dimension. ]

An even more general result holds. Basically, it asserts that close-packed
single error-correcting codes for the Lee metric exist in n dimensions, for all n,
as it follows:
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Figure 3: A cross section of the close-packed 7 x 7 x 7 hypertorus,
from [12]

Theorem 4. ([12], p. 307) In n dimensions, the Lee spheres of radius 1
can be used to close-pack the hypertorus which is g x ¢ x ¢ X ...x q = q", where
q=2n+1.

In the proof of Theorem 4 the set S of all points (aq,as,...,a,) of the

hypertorus, as centers of the spheres, satisfying
n

Z ia; =0 (mod 2n + 1) (5)
i=1
are collected.
Besides the number of solutions to this congruence is clearly ¢" ", since
any choice of as,as,...,a, may be made and then there is a unique value of a;
modulo ¢ to satisfy the congruence.

1

Therefore by using equation (5) we can construct a single-error-correcting
code in dimension three with 49 codewords. Table 5 shows the corresponding
codewords.

Since the close-packed 7 x 7 x 7 hypertorus has a finite number of bits, we
use operations modulo ¢ = 2n + 1 =7 (n = 3) to guarantee that the points of
a given coset remain inside the hypertorus ([12], Theorem 3).

The 7 x 7 x 7 hypertorus consists of seven 7 x 7 arrays, where each square
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of these arrays means a cube. In Table 5 these seven 7 x 7 arrays, which are
the seven 7 X 7 cross-sections, are labeled by the numbers 0,1,2,3,4,5 and 6.
Fach column of this table shows the corresponding codewords of each 7 x 7
cross-section and these codewords are featured by equation (5).

Next we explain how to separate 49 adjacent bits of the 7x 7 x 7 hypertorus
arranged in a 7 X 7 array by the greatest distance.

By observing Table 4 the codewords of each 7 x 7 array can be generated
by the vector (0 1 4), that is, we can put them apart by one unit to the right
in the horizontal direction and four units down in the vertical one. Now to rise
in the third dimension to change from one array to the one above to continue
the construction of the corresponding codewords we use the vector (1 0 2) as
the corresponding generator. Thus, by using these vectors, we can construct
the 49 codewords shown in Table 5.

FEach codeword of the single-error-correcting code has the heptacube as
being its Voronoi region. Consequently by using the Voronoi region and knowing
how the codewords are constructed we can rearrange the 343 = 49 x 7 total
bits.

Thereby the first 49 adjacent bits are arranged as being the 49 codewords
of the hypertorus. Now the other six blocks with 49 adjacent bits are arranged
analogously. So suppose that we wish to separate another block with 49 ad-
jacent bits in the hypertorus. As the Voronoi region has six cubes around the
cube related to the codeword, we start arranging the first bit of the 49 bits in
one of these six cubes related to the codeword (0 0 0). Therefore if we use the
vector (0 1 4) in each 7 x 7 array to arrange the plane and rise in the third
dimension by using the vector (1 0 2) to change from one array to the one above
we can distribute these 49 adjacent bits in the hypertorus, where each one of
them belongs to a different Voronoi region and the same cube of each Voronoi
region.

Therefrom, by using this distribution method, we can cyclically arrange
each one of the seven blocks with 49 adjacent bits in the 7 x 7 x 7 hypertorus.

In Table 3 it is shown the solutions related to the Diophantine equation (3)
and Theorem 1.

Then in this section we present the 3D-interleaving. In [12] it is conjectured
that this is the only case for which a close-packing exists in dimension three.

We have that the codewords of each 7 x 7 array are generated by the vector
(0 14), that is, we can put them apart by one unit to the right in the horizontal
direction and four units down in the vertical one, see column 0 in Table 5 and the
transformation 1" for ¢ = 7 in Table 3. Then we can observe that each 7x7 array
satisfies the rook domain property [13]. Table 4 provides us the codewords that
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Table 3: The greatest minimum distance from the solution of equa-
tion (3)

Transformation 7T’

2 1
K (13)

o Lo [(18) (45)
al o (5 2) (7))
sl o] (12
ol (1)

present the first digit as being 0, where X indicates a corresponding codeword,
and we can check that no codeword from this 7 x 7 array meet another in the
horizontal direction.

Table 4: Codewords of the 7 x 7 array labeled 0, see Table 3

oo a|w|v| o
>

Besides to rise in the third dimension to change from one array to the one
above to continue constructing the corresponding codewords we must use the
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Table 5: Arrays, see Table 4

ARRAYS
“07 17| 2 “37 “47 | #5767
000 | 102 | 204 306 401 | 503 | 605
014 | 116 | 211 313 415 | 510 | 612
021 | 123 | 225 320 422 | 524 | 626
035 | 130 | 232 334 436 | 531 | 633
042 | 144 | 246 341 443 | 545 | 640
056 | 151 | 253 355 450 | 552 | 654
063 | 165 | 260 362 464 | 566 | 661

vector (1 0 2) as the corresponding generator. By [1] we can observe that this
vector also provides us the rook domain property [13] to the vertical direction
because no codeword meets another in this direction.

Thereby we can conclude that the corresponding 3D-interleaving satisfies
the rook-domain property [13].

Consequently one-dimensional single-error-correcting codes can be used to
correct the spread errors instead of the more complex 3-dimensional burst-error-
correcting codes. Therefore, in this case, we have a perfect code [12]. Other
approaches on the construction of perfect codes can be found in [15, 16].

6. Four-dimensional interleaving

In this section the congruence equation (5) is used to separate bits of a cluster
of errors in a 9 X 9 x 9 x 9 hypertorus.

A point in the 4-space has 8 other points within a Lee distance 1. Geomet-
rically we may visualize a Lee sphere of radius 1 in 4 dimensions as a central
hypercube which has 8 hyperfaces to which another hypercube has been affixed
to each of its hyperfaces.

Since the close-packed 9 x 9 x 9 x 9 hypertorus has a finite number of bits,
we use operations modulo ¢ = 2n+1 =9 (n = 4) to guarantee that the points
of a given coset remain inside the hypertorus ([12], Theorem 3). Thus by using
equation (5) we develop an algorithm that by straightforward computation lists
the 729 codewords.

The 9 x 9 x 9 x 9 hypertorus consists of nine 9 x 9 x 9 hypertorus, where
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each square of these hypertorus means a cube. These nine 9 x 9 x 9 hypertorus
which are 9 x 9 x 9 cross-sections are labeled by the numbers 0,1, 2,3,4,5,6,7
and 8. The cross-section labeled j, where 7 =0,1,2,3,4,5,6,7 and 8, provides
the 81 codewords that present the first digit as being j. As we already know
these codewords are featured by equation (5).

Next we explain how to separate 729 adjacent bits of the 9 x 9 x 9 x 9
hypertorus arranged in a 9 x 9 x 9 hypertorus by the most significant distance.

By observing the codewords that were found by the algorithm mentioned
previously, we can see that the vectors (0 0 1 6), (011 1) and (1 00 2) can
generate all the codewords as it follows: we start with the codeword (0 0 0 0)
and, by using these three vectors, we can generate all the other codewords; we
sum the vector (0 0 1 6) eight times to generate nine codewords that present
the first digit as being 0, if we sum this vector nine times, we obtain the null
vector. Now we sum the ninth codeword with the vector (0 1 1 1) to find the
tenth one and, after that, we sum again the vector (0 0 1 6) eight times to
generate more nine codewords that present the first digit as being 0. Thus
we continue this procedure until we obtain 81 codewords. Whenever we sum
a codeword with the vector (0 1 1 1), the second digit of the new codeword
is changed and its value is the second digit of the codeword plus 1. Then we
apply the generator (0 0 1 6) to generate nine codewords for each new second
digit. Hence, for each first digit j, the second digit changes nine times and,
when we find the last codeword related to the first digit j, if we sum it with
the vector (0 1 1 1), we obtain the null vector. Now we need to obtain the first
codeword that presents the first digit as being 1. Therefore, for that, we sum
the vector (1 0 0 2) with the codeword (0 0 0 0) which is the first codeword that
presents the first digit as being 0. After that we obtain the codeword (1 0 0 2)
and we perform the same procedure related to the all-zero codeword to find
the 81 codewords which present the first digit as being one. Consequently we
use this systematic way to find all the other codewords. We can observe that
if we sum the first codeword that presents the first digit as being eight with
the corresponding vector (1 0 0 2), we also obtain the null vector. We must
observe the corresponding cyclicalities because all the codewords are featured
by equation (5) which uses operations modulo ¢ = 9.

Hence to generate all the codewords of a cross-section we must use the
vectors (0 0 1 6) and (0 1 1 1). Now to rise in the fourth dimension to change
from one cross-section to the other above to continue the construction of the
corresponding codewords, we must use the vector (1 0 0 2) as the corresponding
generator. So by using these vectors we can construct the 729 codewords.

Each codeword of the single-error-correcting code has a hypercube as being
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its Voronoi region. Then by using the Voronoi region and knowing how the
codewords can be constructed we can rearrange the 6561 = 729 x 9 total bits.

Thereby the first 729 adjacent bits are arranged as being the 729 codewords
of the 9 X 9 x 9 x 9 hypertorus. Now the other eight blocks with 729 adjacent
bits are arranged analogously. So suppose that we wish to separate another
block with 729 adjacent bits in the hypertorus. As the Voronoi region has eight
cubes around the hypercube related to the codeword, we start the arrangement
putting the first bit of the 729 bits in one of these eight cubes around the
codeword (0 0 0 0). Thus if we use the vectors (0 0 1 6) and (0 1 1 1) in each
9 x 9 x 9 cross-section to make the arrangement in it and rise in the fourth
dimension by using the vector (1 0 0 2) to change from one cross-section to the
other above, we can distribute these 729 adjacent bits in the hypertorus where
each one of them belongs to a different Voronoi region and the same cube of
each Voronoi region.

Hence by using this method of distribution we can cyclically arrange each
one of the nine 9 x 9 x 9 cross-sections with 729 adjacent bits in the 9 x9x 9 x 9
hypertorus.

So in this section we present the four-dimensional interleaving. In [12] it
is conjectured that this is the only case for which a close-packing exists in
dimension four.

We have that the codewords of each 9 x 9 x 9 cross-section are generated
by the vector (0 0 1 6), that is, we can put them apart by 1 unit to the right in
the horizontal direction and six units down in the vertical one. Thus Table 6
provides us the first nine codewords that present the first digit as being 0, where
X indicates a corresponding codeword, and we can check that three codewords
from this 9 x 9 array meet each other in the horizontal direction. Then we can
observe that each 9 x 9 x 9 cross-section does not satisfy the rook domain [13]
property.

Besides to rise in the fourth dimension to change from one cross-section
to the other above to continue constructing the corresponding codewords, we
must use the vector (1 0 0 2) as the corresponding generator. By [1] we can
observe that this vector provides us the rook domain property [13] to the “ver-
tical direction” (fourth dimension) because no codeword meets another in this
direction.

So as the vector (0 0 1 6) does not yield us the rook domain [13] property,
then we can conclude that the corresponding 4D-interleaving does not satisfy
the rook-domain property [13].

Consequently one-dimensional random-error-correcting codes
that correct three errors can be used to correct the spread errors instead of
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Table 6: Codewords of the 9 x 9 array labeled 0, see Table 3

DN DT | W N+~ O

the more complex 4-dimensional burst-error-correcting codes. Therefore, in
this case, we have neither a perfect code [12] nor a quasi-perfect code [14].

7. Five-dimensional interleaving

In this section bits of a cluster of errors are separated in an 11 x 11 x11x 11 x 11
hypertorus.

A point in the 5-space has 10 other points within a Lee distance 1. Geomet-
rically we may visualize a Lee sphere of radius 1 in 5 dimensions as a central
hypercube which has 10 hyperfaces to which another hypercube has been affixed
to each of its hyperfaces.

Using equation (5) of the Theorem 4, we can construct a single-error-
correcting code in dimension five with 14641 codewords.

Since the close-packed 11 x 11 x 11 x 11 x 11 hypertorus has a finite number
of bits, we use operations modulo ¢ = 2n + 1 = 11 (n = 5) to guarantee that
the points of a given coset remain inside the hypertorus ([12], Theorem 3).
Thus by using equation (5) we develop an algorithm that by straightforward
computation shows us the 14641 codewords.

The 11 x 11 x 11 x 11 x 11 hypertorus consists of eleven 11 x 11 x 11 x 11
hypertorus where each square of these hypertorus means a cube. These eleven
11 x 11 x 11 x 11 hypertorus which are 11 x 11 x 11 x 11 cross sections are
labeled by the numbers 0,1,2,3,4,5,6,7,8,9 and 10. The cross section labeled
7, where 7 = 0,1,2,3,4,5,6,7,8,9 and 10, provides the 1331 codewords that
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present the first digit as being j. As we already know these codewords are
featured by equation (5).

Next we explain how to separate 14641 adjacent bits of the 11 x 11 x 11 x
11 x 11 hypertorus arranged in an 11 x 11 x 11 x 11 hypertorus by the most
significant distance.

By observing the codewords that were found by the algorithm mentioned
previously, we can see that all the codewords can be generated by the vectors
(00018),(00113),(01117)and (1000 2) as it follows: we start with the
codeword (0 0 0 0 0) and by using these four vectors we are able to generate
all the other codewords; we sum the vector (0 0 0 1 8) ten times to generate 11
codewords that present the first digit as being 0, if we sum this vector eleven
times we obtain again the null vector. Now we sum the eleventh codeword with
the vector (0 0 11 3) to generate the twelfth one and, after that, we sum again
the vector (0 00 1 8) ten times to generate more 11 codewords that present the
first digit as being 0. The twelfth codeword has the third digit as being 1. Thus
we continue this procedure until we obtain 121 codewords. Whenever we sum
a codeword with the vector (0 0 1 1 3), the third digit of the new codeword is
changed and its value is the third digit of the codeword plus 1. Then for each
new third digit we apply the generator (0 0 0 1 8) to generate 11 codewords.

Hence for each first digit j the third digit changes eleven times and when
we find the last codeword related to the third digit, if we sum it with the vector
(0011 3), we obtain the null vector.

After finding these 121 codewords we must sum the last codeword with the
vector (0 1 1 1 7) to change the second digit from the value 0 to 1. For each
new second digit we must apply the previous procedure to obtain more 121
codewords again. For each first digit j the second digit also changes eleven
times and when we find the last codeword related to the second digit, if we sum
it with the vector (0 1 1 1 7), we obtain the null vector. So we can observe that
we have the 1331 codewords of each cross-section which is labeled j.

Now we need to obtain the first codeword that presents the first digit as
being 1. Therefore, for that, we sum the vector (1 0 0 0 2) with the codeword
(0 0 0 0 0) which is the first codeword that presents the first digit as being
0. After that we obtain the codeword (1 0 0 0 2) and we perform the same
procedure related to the all-zero codeword to find the 1331 codewords which
present the first digit as being 1. Thus we use this systematic way to find all
the other codewords. We can observe that if we sum the first codeword that
presents the first digit as being 10 with the corresponding vector (1 0 0 0 2),
we also obtain the null vector. We must observe the corresponding cyclicalities
because all the codewords are featured by equation (5) which uses operations
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modulo ¢ = 11.

Hence to generate all the codewords of a cross section we must use the
vectors (000 18), (00113)and (011 17). Now to rise in the fifth
dimension to change from one cross section to the other above to continue the
construction of the corresponding codewords, we must use the vector (100 0 2)
as the corresponding generator. So by using these vectors we can construct the
14641 codewords.

Each codeword of the single-error-correcting code has a hypercube as being
its Voronoi region. Then by using the Voronoi region and knowing how the
codewords can be constructed we can rearrange the 161051 = 14641 x 11 total
bits.

Thereby the first 14641 adjacent bits are arranged as being the 14641 code-
words of the 11 x 11 x 11 x 11 x 11 hypertorus. Now the other ten blocks
with 14641 adjacent bits are arranged analogously. So suppose that we wish
to separate another block with 14641 adjacent bits in the hypertorus. As the
Voronoi region has ten cubes around the hypercube related to the codeword,
we start the arrangement putting the first bit of the 14641 bits in one of these
ten cubes around the codeword (0 0 0 0). Thus if we use the vectors (000 1 8),
(00113)and (01117)ineach 11 x 11 x 11 x 11 cross-section to make the
arrangement in it and rise in the fifth dimension by using the vector (1 0 0 0 2)
to change from one cross-section to the other above, we can distribute these
14641 adjacent bits in the hypertorus where each one of them belongs to a
different Voronoi region and to the same cube of each Voronoi region.

Then by using this method of distribution we can cyclically arrange each
one of the eleven 11 x 11 x 11 x 11 cross-sections with 14641 adjacent bits in
the 11 x 11 x 11 x 11 x 11 hypertorus.

So in this section we present the five-dimensional interleaving. In [12] it
is conjectured that this is the only case for which a close-packing exists in
dimension five.

We have that the codewords of each 11 x 11 x 11 x 11 cross-section are
generated by the vector (0 0 0 1 8), that is, we can put them apart by 1 unit to
the right in the horizontal direction and eight units down in the vertical one.
Thus Table 7 provides us the first 11 codewords that present the first digit as
being 0, where X indicates a corresponding codeword, and we can check that
no codeword from this 11 x 11 array meet another in the horizontal direction.
Then we can observe that each 11 x 11 x 11 x 11 cross-section satisfies the rook
domain [13] property.

Besides to rise in the fifth dimension to change from one cross-section to the
other above to continue constructing the corresponding codewords, we must use
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Table 7: Codewords of the 11 x 11 array labeled 0, see Table 3

011234567 |8]|9]10

©o|oo| | o] | ke | | po| =] o
~

S
=

the vector (1000 2) as the corresponding generator. By [1] we can observe that
this vector provides us the rook domain property [13] to the “vertical direction”
(fifth dimension) because no codeword meets another in this direction.

So as the vector (0 0 0 1 8) yields us the rook domain property [13], then we
can conclude that the corresponding 5D-interleaving satisfies the rook-domain
property [13].

Consequently one-dimensional single-error-correcting codes can be used to
correct the spread errors instead of the more complex 5-dimensional burst-error-
correcting codes. So, in this case, we have a perfect code [12].

Table 8 summarizes the cases considered previously.

8. The n-dimensional interleaving

The congruence equation (5), in this case, is used to separate bits of a cluster
of errors in a ¢" = ¢ X ¢ X ... X ¢ (n times) hypertorus, where ¢ = 2n + 1.

A point in the n-space has ¢—1 = 2n other points within a Lee distance 1 of
it. Geometrically we may visualize a Lee sphere of radius 1 in n dimensions as a
central hypercube which has ¢ — 1 = 2n hyperfaces to which another hypercube
has been affixed to each of its hyperfaces.

Since the close-packed ¢ = ¢ x ¢ X ... x ¢ (n times) hypertorus has a finite
number of bits, we use operations modulo ¢ = 2n + 1 to guarantee that the
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Table 8: Summary

501

‘ q ‘ Generator ‘

Adjustments

5

12

None

014

Add 102 when changing column

0016

Add 0111 when changing 2nd digit
Add 1002 when changing column

11

00018

Add 01117 when changing 2nd digit
Add 01113 when changing 3rd digit
Add 10002 when changing column

13

0000110

Add 011112 when changing 2nd digit
Add 0011111 when changing 3rd digit
Add 000115 when changing 4th digit

Add 100002 when changing column

15

00000112

Add 01111110 when changing 2nd digit
Add 0011116 when changing 3rd digit
Add 0001110 when changing 4th digit
Add 0000117 when changing 5th digit
Add 1000002 when changing column

17

000000114

Add 01111113 when changing 2nd digit
Add 001111116 when changing 3rd digit
Add 000111110 when changing 4th digit
Add 00001112 when changing 5th digit
Add 00000119 when changing 6th digit
Add 10000002 when changing column

points of a given coset remain inside the hypertorus ([12], Theorem 3).

The ¢" = ¢ x g X ... x q (n times) hypertorus consists of ¢ ¢"~

1

=gxXgx

... % q (n—1 times) hypertorus, where each square of these hypertorus means
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a cube. These ¢ ¢" !

=qgxqXx...xq (n—1 times) hypertorus which are
"' =¢gxqx...xq(n—1times) cross sections are labeled by the numbers
0,1,2,...,9—1. The cross section labeled j, where j = 0,1,2,...,¢—1, provides
the ¢"~2 codewords that present the first digit as being j. As we already know
these codewords are featured by equation (5).

From now on we explain how to separate ¢"~! adjacent bits of the ¢ =
q X qx...xq (ntimes) hypertorus arranged ina ¢" ! =¢xgx...xq (n—1
times) hypertorus by the greatest distance.

The codewords of each ¢" ! = gx gxgx...xq (n—1 times) cross section
are generated by the vector v that has the following features:

o v has n coordinates;

¢ The number n + (n — 2) belongs to the last coordinate of the vector v;

¢ The coordinate previous to the last one is fixed by the number 1;

© The other coordinates which are the first (n —2) ones are filled by the number
ZEro.

We restrict the algorithm developed to generate only the codewords whose
first digit is equal to zero. Thus by using equation (6) we have the vector v,,_;
which changes the (n —i)-th digit and, after applying the generator v, we have
q' codewords that present the first digit as being zero.

Fori=2,...,(n—3),(n—2), we have

Un—i = V(gli=1)41) = Vgli=1), (6)

where V(gli-141) and v, -1y denote the (q(i_l) + 1) and ¢ Y-th codewords
whose first digit is equal to zero, respectively.

Therefore, for each j, j = 0,1,2,...,¢—1, whenever we sum the correspond-
ing codeword with the vector v,_;, the (n — 7)-th digit of the new codeword is
changed and its value is the (n —i)-th digit of the correspondent codeword plus
1. Then for each new (n —)-th digit we apply the generator v to obtain a total
of ¢* codewords.

So the sequence of vectors used to change the digits in each cross section j
is the following:

V(n—2)>V(n—3)s- -+ Uln—(n—2)) = V2. (7)

Hence, for each j, j = 0,1,2,...,q — 1, we apply the generator v and
to change the digits (n —i) = n —2,n — 3,...,2 we apply the vectors v,_;
(i =2,3,...,n—2), respectively, and after each changing we apply the generator
v to obtain a total of ¢' codewords. Thus we obtain ¢"~2? codewords in each
cross section labeled j.
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Then we have that the vectors v and v,,_;, where i = 2,3,4,...,n — 2, can
generate all the codewords of a cross-section j and we start the procedure with
the all-zero codeword.

Now to rise in the n-th dimension to change from one cross section to the
other above to continue the construction of the corresponding codewords, we
must use the vector (1 00 --- 0 2) as the corresponding generator. So by using
the vectors v, v,—; (1 =2,3,4,...,n—2)and (100 --- 0 2) we can construct
all the ¢"~! codewords.

Each codeword of the single-error-correcting code has a hypercube as being
its Voronoi region. Then by using the Voronoi region and knowing how the
codewords can be constructed we can rearrange the ¢" total bits.

Thereby the first ¢"~! adjacent bits are arranged as being the ¢! code-
words of the ¢" = ¢ x ¢ X ... x ¢ (n times) hypertorus. Now the other ¢ — 1
blocks with ¢"~! adjacent bits are arranged analogously. So suppose that we
wish to separate another block with ¢"~! adjacent bits in the hypertorus. As
the Voronoi region has ¢ — 1 = 2n cubes around the hypercube related to the
codeword, then we start the arrangement putting the first bit of the ¢"~! bits
in one of these ¢ — 1 = 2n cubes related to the codeword (0 0 --- 0). Thus if
we use the vectors v and v, ; (i =2,3,...,n—2)ineach ¢" ' =gxgx...xq
(n — 1 times) cross-section to make the arrangement in it and rise in the n-th
dimension by using the vector (10 --- 0 2) to change from one cross-section to
the other above, we can distribute these ¢"~! adjacent bits in the hypertorus
where each one of them belongs to a different Voronoi region and to the same
cube of each Voronoi region.

Then by using this distribution method we can cyclically arrange each one
of the cross-sections with ¢"~! adjacent bits in the ¢ hypertorus.

So in this section we present the n-dimensional interleaving. In [12] it
is conjectured that this is the only case for which a close-packing exists in
dimension n.

We have that the codewords of each ¢" ! = ¢ x ¢ x ... x ¢ (n — 1 times)
cross-section are generated by the vector v, that is, we can put them apart by
1 unit to the right in the horizontal direction and (n + (n — 2)) units down in
the vertical one.

Let p > 2 be a positive integer. Consequently if n # 1 mod 3, then the
rook domain property [13] is satisfied because (n + (n — 2)) is not a multiple
of 3, that is, 2n — 2 # 0 mod 3, and so no codeword from this ¢ x ¢ array
meet another codeword in the horizontal direction. However if n = 3p — 2 =
1 mod 3, then (n + (n — 2)) is a multiple of 3 and at least one codeword from
this ¢ x ¢ array meet another codeword in the horizontal direction. Then in
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this case each ¢""! = ¢ x ¢ x ... x ¢ (n — 1 times) cross section does not

satisfy the rook domain property [13]. We have these features by observing
that (2n+1) — (n+ (n—2)) = 3, where ¢ = 2n + 1, and the codewords of each
cross section are generated by the vector v, that is, we can put them apart by
1 unit to the right in the horizontal direction and (n + (n — 2)) units down in
the vertical one.

Besides to rise in the n-th dimension to change from one cross-section to
the one above to continue the construction of the corresponding codewords, we
must use the vector (1 0 --- 0 2) as the corresponding generator. By [1] we can
observe that this vector provides the rook domain property [13] to the “vertical
direction” (n-th dimension) because no codeword meets another codeword in
this direction.

So, for (n+ (n—2)) not a multiple of 3, the vector v yields the rook domain
property [13]. Then in this case we can conclude that the corresponding n-
dimensional interleaving satisfies the rook-domain property [13].

As a consequence one-dimensional single-error-correcting codes can be used
to correct the spread errors instead of the more complex n-dimensional burst-
error-correcting codes and we have a perfect code [12].

Now, for (n 4+ (n — 2)) a multiple of 3, the vector v does not yield the rook
domain property [13]. Then in this case we can conclude that the corresponding
n-dimensional interleaving does not satisfy the rook-domain property [13].

Consequently one-dimensional random-error-correcting codes
that correct three errors can be used to correct the spread errors instead of
the more complex n-dimensional burst-error-correcting codes and we have nei-
ther a perfect code [12] nor a quasi-perfect code [14].

9. Conclusion

A significant n-dimensional interleaving scheme for combating quasicircular
clusters of errors using simple error-correcting codes was proposed in this work.
Such a scheme makes use of the Golomb et al. congruence equation (equation
(5)). Also both the set partitioning concept (Table 3) and Golomb’s et al.
congruence equation (equation (5)) are distinct techniques leading to the same
solution. For lower dimensions either one of them may be used indistinctly.
However, for higher dimensions, the latter one is less complex. Among many
applications for which this technique can be employed we mention magnetic or
optical data storage and channel coding.



ON THE CONSTRUCTION OF PERFECT CODES... 505

Acknowledgment

The authors would like to thank the financial Brazilian agency FAPESP (Fundagao
de Amparo a Pesquisa do Estado de Sao Paulo), under grant no. 2013/03976-
9, for the funding support and Dr. Mario Enrique Duarte Gonzélez for the
support of the computational computations.

1]

References

C. de Almeida and R. Palazzo Jr., Efficient two-dimensional interleaving
technique by use of the set partitioning concept, IET Eletronics Letters,
32, No 6 (1996), 538-539.

S. Lin and D.J. Costello Jr., Error Control Coding, Prentice Hall (2004).

C.C. Trinca Watanabe, J.-C. Belfiore, E.D. de Carvalho, J. Vieira
Filho, R. Palazzo Jr. and R.A. Watanabe, Construction of complex
nested ideal lattices for complex-valued channel quantizattion, Interna-
tional Journal of Applied Mathematics, 31, No 4 (2018), 549-585; doi:
10.12732/ijam.v31i4.4.

C.C. Trinca Watanabe, J.-C. Belfiore, E.D. de Carvalho, J. Vieira Filho
and R.A. Watanabe, Construction of nested real ideal lattices for interfer-
ence channel coding, International Journal of Applied Mathematics, 32,
No 2 (2019), 295-323; doi: 10.12732/ijam.v32i2.11.

H. Cohn, Advanced Number Theory, Dover Publications, New York (1980).

M. Blaum, P.G. Farrell and H.C.A. Van Tilborg, Handbook of Coding The-
ory, Elsevier, Amsterdam (1998).

W. Zhang and J.K. Wolf, A Class of burst error-correcting quasi-cyclic
codes, IEEE Transactions on Information Theory, 34, No 3 (1988), 463-
479; doi: 10.1109/18.6026.

A'Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of
Physics, 303, No 1 (2003), 2-30.

C.D. Albuquerque, R. Palazzo Jr. and E.B. da Silva, Construction of new
toric quantum codes, Contemporary Mathematics, 518, No 1 (2010), 1-10.



506

[10]

[11]

[12]

[13]

[14]

[17]

[18]

[19]

C.C. Trinca, R.P. Junior

C.C. Trinca Watanabe, J.-C. Belfiore, E.D. de Carvalho and J. Vieira Filho,
Fg-Lattice via the cyclotomic field Qg,,, International Journal of Applied
Mathematics, 31, No 1 (2018), 63-71; doi: 10.12732/ijam.v31i1.6.

G. Ungerboeck, Channel coding with multilevel/phase signals, IEEE
Transactions on Information Theory, 28, No 1 (1982), 55-67; doi:
10.1109/TIT.1982.1056454.

S.W. Golomb and L.R. Welch, Perfect codes in the lee metric and the
packing of polyominoes, SIAM Journal on Applied Mathematics, 18, No 2
(1970), 302-317; doi: 10.1137/0118025.

S.W. Golomb and E.C. Posner, Rook domains, latin squares, affine planes
and error-distributing codes, IEFEE Transactions on Information Theory,
10, No 3 (1964), 196-208; doi: 10.1109/TIT.1964.1053680.

C.Q. Queiroz, C. Camarero, C. Martinez and R. Palazzo Jr., Quasi-
perfect codes from cayley graphs over integer rings, IEFE Trans-
actions on Information Theory, 59, No 9 (2013), 5905-5916; doi:
10.1109/T1T.2013.2266398.

F. Oggier, G. Rekaya, J.-C. Belfiore and E. Viterbo, Perfect space-time
block codes, IEEE Transactions on Information Theory, 52, No 9 (2006),
3885-3902; doi: 10.1109/TIT.2006.880010.

C.C. Trinca, E.D. de Carvalho, J. Vieira Filho and A.A. Andrade,
On the construction of perfect codes from HEX signal constellations,
Journal of the Franklin Institute, 349, No 10 (2012), 3060-3077; doi:
10.1016/j.jfranklin.2012.09.007.

C. Alves, W.L.S. Pinto and A.A. Andrade, Well-rounded lattices via poly-
nomials with real roots, International Journal of Applied Mathematics, 33,
No 4 (2020), 663-672; doi: 10.12732/ijam.v33i4.10.

J. Carmelo Interlando, J.O.D. Lopes and T.P. da Nébrega Neto, A new
number field construction of the Dy4-Lattice, International Journal of Ap-
plied Mathematics), 31, No 2 (2018), 299-305; doi: 10.12732/ijam.v31i2.11.

J. Carmelo Interlando, A.A. Andrade, B.G. Malaxechebarria, A.J. Ferrari
and R.R. de Aratjo, Fully-diverse lattices from ramified cyclic extensions

of prime degree, International Journal of Applied Mathematics, 33, No 6
(2020), 1009-1015; doi: 10.12732/ijam.v33i6.4.



