SOME APPLICATIONS OF NON CONVEX
SUBDIFFERENTIAL CALCULUS IN BINORMED SPACES

Abstract

In this article we are interested to give an analogue result of the subdifferentiation of the marginal functions in Banach spaces established by Mordukhovich and Shao in [6] using the so-called the srtong generalized limiting subdifferential defined in binormed space introduced by Hlal in [3].

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 2
Year: 2020

DOI: 10.12732/ijam.v33i2.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley (1983).
  2. [2] J. Hlal, Subdifferentiation of marginal functions in binormed spaces, Intern. J. Math. Anal., 55 (2015), 2725-2732.
  3. [3] J. Hlal, On strong limiting subdifferential calculus in separable binormed spaces, Rend. Circ. Mat. Palermo II, 66 (2017), 439-445.
  4. [4] S. Lahrech, J. Hlal, A. Jaddar, A. Ouahab, A. Mbarki, On nonconvex subdifferential calculus in binormed spaces, Int. Math. Forum, 55 (2007), 2723-2731.
  5. [5] S. Lahrech, J. Hlal, A. Jaddar, A. Ouahab, A. Mbarki, Characterizaion of the extrema of a pseudoconvex function in terms of limiting and strong limiting subdifferential, Int. Math. Forum, 55 (2007), 2711-2718.
  6. [6] B.S. Mordukhovich, Y. Shao, On nonconvex subdifferential calculus in Banach spaces, J. Conv. Anal., 2 (1995), 211-227.