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Abstract: In this article we are interested to give an analogue result of
the subdifferentiation of the marginal functions in Banach spaces established
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limiting subdifferential defined in binormed space introduced by Hlal in [3].
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1. Introduction

The study of subdifferentiability of marginal functions is of great interest not
only because it is related to the Lagrange multipliers but also because it is
connected to the study in sensitivity of some problems in optimization and
optimal control. This class of functions are usually nonsmooth; therefore, to
compute the generalized (in some sense) derivative for the marginal functions
is a challenging issue which has many significations to various applications. We
can see [1, 2, 6].

We recall that the marginal function is defined by:

m(x) = inf{ϕ(x, y)/y ∈ Φ(x)}, (1)

where ϕ : X×Y→ R̄ an extended real-valued function and Φ a multifonction
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acting from X into Y .

Mordukhovich and Shao [6] used the limiting subdifferential in order to
prove formulas of subdifferentiation of marginal functions in general Banach
spaces, however this result must involve the strict differentiability notion. The
present paper studies, with the help of Mordukhovich’s results is to generalize
this interesting result for non necessarily Fréchet strictly differentiable mappings
using the notion of limiting subdifferential in binormed spaces (generalized lim-
iting subdifferential). Thus, our results are closely related to (extending in some
sense) those of [6]. After recalling some definitions and notions in the first sec-
tion, the second one is devoted to establish the main result of this paper related
to subdifferential of marginal functions in binormed spaces. Finally, we give an
example of a non Fréchet strictly differentiable mapping for which we can apply
our theorem, while the theorem of Mordukhovich and Shao [6] cannot be used.

2. Basic definitions and properties

In this paper, (X,‖ . ‖1, ‖ . ‖2) and (Y, ‖ . ‖3, ‖ . ‖4) denote two binormed spaces
such that (X, ‖ . ‖2) and (Y, ‖ . ‖4) are two separable Banach spaces, and for
some c > 0, c′ > 0 ‖ . ‖1≤ c ‖ . ‖2,‖ . ‖3≤ c′ ‖ . ‖4. For (x, y) ∈ X × Y we set
‖ (x, y) ‖5=‖ x ‖1 + ‖ y ‖3 and ‖ (x, y) ‖6=‖ x ‖2 + ‖ y ‖4. Hence, X × Y
becomes a binormed space under the pair of norms (‖ . ‖5, ‖ . ‖6). Moreover,
‖ . ‖5≤ max(c, c′) ‖ . ‖6.

By Cl1 Ω we denote the closure of Ω in (X, ‖ . ‖1), while x
ϕ,‖.‖1
→ x̄ (respec-

tively x
Ω,‖.‖1
−→ x̄) means that x

‖.‖1
→ x̄ with ϕ(x) → ϕ(x̄) (respectively, x → x̄

with respect to the norm ‖ . ‖1 and x, x̄ ∈ Ω). Let B1
δ (x̄) denotes the open ball

centered at x̄ with radius δ in (X, ‖ . ‖1), where x̄ ∈ X and δ > 0. For any mul-
tifunction Φ acting from X into its topological dual (X, ‖ . ‖2)

∗, we define the

(‖ . ‖1, ‖ . ‖2)-sequential Kuratowski-Painlevé upper limit by:
(1,2)

lim sup
x→x̄

Φ(x) ≡

(‖ . ‖1, ‖ . ‖2) − lim supx→x̄Φ(x) = {x∗ ∈ (X, ‖ . ‖2)
∗/∃x∗k

ω∗

→ x∗,∃ xk
‖.‖1
→ x̄

with x∗k ∈ Φ(xk) ∀k = 1, 2, . . .}, where
ω∗

→ denotes the convergence for the
weak-star topology ∗σ((X, ‖ . ‖2)

∗,X) of (X, ‖ . ‖2)
∗.

Definition 1. ([4]) Let U be an open subset of (X, ‖ . ‖1) and let ϕ :
U −→ R be a real-valued function. Assume that x̄ ∈ U .

We say that ϕ is (‖ . ‖1, ‖ . ‖2)-strictly Fréchet differentiable at x̄ if there
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exists a continuous linear operator L from (X, ‖ . ‖2) into R such that

lim
u,x

‖.‖1→ x̄

ϕ(u) − ϕ(x)− L(u− x)

‖ u− x ‖2
= 0. (2)

In this case, we set ∇1,2ϕ(x) ≡ (‖ . ‖1, ‖ . ‖2)−∇ϕ(x) = L.

Let us remark that if ϕ is (‖ . ‖1, ‖ . ‖2)-strictly Fréchet differentiable at
x̄, then it is necessarily ‖ . ‖2-strictly Fréchet differentiable at x̄ and therefore,
continuous with respect to the norm ‖ . ‖2. But in general, even if ϕ is (‖ . ‖1
, ‖ . ‖2)-strictly Fréchet differentiable at x̄, it is not necessarily ‖ . ‖1-strictly
Fréchet differentiable at x̄. But the converse is true, that is, if ϕ is ‖ . ‖1-strictly
Fréchet differentiable at x̄, then it is (‖ . ‖1, ‖ . ‖2)-strictly Fréchet differentiable
at x̄.

Definition 2. ([4]) Let ε ≥ 0. We define the generalized Fréchet ε-
subdifferential of ϕ : X −→ R at x ∈ domϕ with respect to the pair of norms (‖

. ‖1 ,‖ . ‖2) by: ∂̂ε
1,2

ϕ(x) = {x∗ ∈ (X, ‖ . ‖2)
∗ lim inf

u
‖.‖1−→x

ϕ(u)− ϕ(x) − 〈x∗, u− x〉

‖ u− x ‖2
≥

−ε}. If ε = 0 this construction is called the generalized presubdifferential or
generalized Fréchet subdifferential of ϕ at x with respect to the pair of norms
(‖ . ‖1 ,‖ . ‖2) and we denoted it by ∂̂1,2ϕ(x).

Definition 3. ([3]) Let ϕ : X −→ R̄ be an extended-real-valued function
and x̄ ∈ domϕ. Assume that ϕ is l.s.c. around x̄ with respect to the norm
‖ . ‖1.

We define the strong generalized limiting subdifferential ∂̆1,2ϕ(x̄) with re-
spect to the pair of norms (‖ . ‖1, ‖ . ‖2) by:

∂̆1,2ϕ(x̄) = lim sup

ρց0,εց0,x
ϕ,‖.‖1,ρ→ x̄

∂̂ε
1,2

ϕ(x), (3)

where, lim sup

ρց0,εց0,x
‖.‖1,f,ρ→ x̄

∂̂ε
1,2

ϕ(x) denotes the strong sequential

Kuratowski-Painlevé upper limit with respect to the pair of norms (‖ . ‖1,
‖ . ‖2), i.e.:

lim sup

ρց0,εց0,x
‖.‖1,ϕ,ρ

→ x̄

∂̂ε
1,2

ϕ(x) = {x∗ ∈ (X, ‖ . ‖2)
∗/∃εk ↓ 0, ∃ρk ↓ 0, ∃xk

‖.‖1,ϕ
→

x̄, ∃x∗k
ω∗

→ x∗ such that (ρk)k is a nonincreasing sequence satisfying: ρk >
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0 and ∀ (k1, k2) there is a positive integer k3 ≥ k2 such that

∀x′ ∈ B1
ρk1

(xk3) ϕ(x′)− ϕ(xk3)− 〈x∗k3 , x
′ − xk3〉 ≥ −2εk3 ‖ x′ − xk3 ‖2

and ‖ x̄− xk3 ‖1<
ρk3
2

}.

Let us remark that in general, ∂̆1,2ϕ(x̄) 6⊂ ∂̆2ϕ(x̄) and ∂̆2ϕ(x̄) 6⊂ ∂̆1,2ϕ(x̄).
But if ‖ . ‖1 is equivalent to ‖ . ‖2, then, ∂̆

1ϕ(x̄) = ∂̆2ϕ(x̄) = ∂̆1,2ϕ(x̄). So, the
generalized strong limiting subdifferential is a generalized version of the strong
limiting subdifferential in normed space defined by Lahrech et al. in [5].

Definition 4. Let x̄ ∈ Cl1Ω, the set : N̆1,2(x̄,Ω) = ∂̆1,2δ(x̄,Ω) is called
the strong generalized normal cone to Ω at x̄ with respect to the pair of norms
(‖ . ‖1, ‖ . ‖2). We set N̆1,2(x̄,Ω) = ∅ for x̄ /∈ Cl1Ω. Where δ(.,Ω) the indicator
function defined by: δ(x,Ω) = 0 if x ∈ Ω and δ(x,Ω) = ∞ if x /∈ Ω.

Denote by N̆2(x̄,Ω) the strong normal cone to Ω at x̄ with respect to
the norm ‖ . ‖2. In general, if x ∈ Cl2Ω, then N̆1,2(x̄,Ω) 6⊂ N̆2(x̄,Ω)
and N2(x̄,Ω) 6⊂ N̆1,2(x̄,Ω). But, if ‖ . ‖1 is equivalent to ‖ . ‖2, then
N̆1,2(x̄,Ω) = N̆1(x̄,Ω) = N̆2(x̄,Ω). So, our strong generalized normal cone
N̆1,2(x̄,Ω) defined in binormed space (X, ‖ . ‖1, ‖ . ‖2) generalizes in some sens
the notion of classical normal cone defined in normed space.

Definition 5. ([2]) Let Φ a multifonction acting from (X, ‖ . ‖1, ‖ . ‖2)
into (Y, ‖ . ‖3, ‖ . ‖4) and let (x̄,ȳ)∈cl gphΦ. The multifonction D∗1,2Φ(x̄,ȳ)
acting from (Y, ‖ . ‖4)

∗ into (X ‖ . ‖2)
∗ defined by: D∗1,2Φ(x̄, ȳ)(y∗) = {x∗ ∈

(X, ‖ . ‖2)
∗/(x∗,−y∗) ∈ N̆1,2((x̄, ȳ); gphΦ)} is called the generalized coderivy

of Φ at (x̄,ȳ) with respect to the pair of norms (‖ . ‖1, ‖ . ‖2).
We set D∗1,2Φ(x̄, ȳ)(y∗) = ∅ if (x̄, ȳ) /∈ cl gph Φ.

Let us remark that in general, D∗1,2Φ(x̄, ȳ)(y∗) 6⊂ D∗2Φ(x̄, ȳ)(y∗) and
D∗2Φ(x̄, ȳ)(y∗) 6⊂ D∗1,2Φ(x̄, ȳ)(y∗). But if ‖ . ‖1 is equivalent to ‖ . ‖2,
then D∗1Φ(x̄, ȳ)(y∗) = D∗2Φ(x̄, ȳ)(y∗) = D∗1,2Φ(x̄, ȳ)(y∗). So, the generalized
coderivy is a generalized version of the coderivy in [6]

Definition 6. ([6]) We say that the multifunction M acting from X into
Y have the lower semicompactness property with respect to the pair of norms
(‖ . ‖1, ‖ . ‖3) around the point x̄ if there exists un ‖ . ‖1-neighborhood U of x̄
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such that for any x ∈ U and any sequence xk
‖.‖1
→ x as k → ∞ there is a sequence

yk ∈ M(xk) k=1.2. . . which contains a subsequence converging in (Y, ‖ . ‖3).

3. Subdifferentiation of marginal functions in terms of the strong

generalized limiting subdifferential

The following theorem is the main result of this paper. Before that, we need
the set

M(x) = {y ∈ Φ(x)/ϕ(x, y) = m(x)} (4)

associated with (1).

Theorem 7. Let Φ: X ⇒ Y have closed graph, let M in (4) be lower
semicompact around x̄ ∈ domm with respect to the pair of norms (‖ . ‖1, ‖
. ‖3), and let ϕ be ‖ . ‖5-l.s.c. on gphΦ and (‖ . ‖5, ‖ . ‖6)-Fréchet strictly
differentiable at (x̄, ȳ) for any ȳ ∈ M(x̄). Then:

∂̆1,2m(x̄) ⊂
⋃

ȳ∈M(x̄)

[∇1,2
x ϕ(x̄, ȳ) +D∗5,6Φ(x̄, ȳ)(∇3,4

y ϕ(x̄, ȳ))].

Proof. First we check that the marginal function is l.s.c. around x̄ under
the assumptions made with respect to the norm ‖.‖1 indeed, let U be a neigh-
borhood of x̄ with respect to the norm ‖.‖1 from the local semicompactness for

M . Taking any x ∈ U and sequence xk
‖.‖1
→ x as k → ∞, we find a sequence

yk ∈ M(xk) that contains a subsequence convergent to some point y ∈ Y with
respect to the norm ‖.‖3 and (x, y) ∈ gphΦ. Since ϕ is ‖.‖5 l.s.c.on gph Φ,
then: m(x) ≤ ϕ(x, y) ≤ lim inf

k→∞
Φ(xk, yk)= lim inf

k→∞
m(xk) that proves the l.s.c. of

m around x. Now let us consider a function f : X × Y → R defined by:

f(x, y) = ϕ(x, y) + δ((x, y), gphΦ) (5)

and let us prove that

∂̆1,2m(x̄) ⊂ {x∗ ∈ (X, ‖ . ‖2)
∗/(x∗, 0) ∈ ∂̆5,6f(x̄, ȳ), ȳ ∈ M(x̄)}. (6)

Let x∗ ∈ ∂̆1,2m(x̄), then there exists sequences xk
‖.‖1
→ x̄, x∗k

ω∗

→ x∗, ǫk ց 0

such that m(xk) → m(x̄) as, k → ∞ and x∗k ∈ ∂̆1,2
ǫk m(xk) for all k = 1, 2, ....

Therefore, there exists a sequence ρk ց 0 as k → ∞ with 〈x∗k, x − xk〉 ≤
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m(x) − m(xk) + 2ǫk‖x − xk‖2 ∀x ∈ B1
ρk
(xk), k = 1, 2, .... By definitions of m

and M , for any yk ∈ M(xk) we have: 〈(x∗k, 0), (x, y) − (xk, yk)〉 ≤ f(x, y) −
f(xk, yk) + 2ρk(‖x − xk‖2 + ‖y − yk‖4) for all (x, y) ∈ B5

ρk
(xk, yk), k = 1, 2, ....

Due to (3) and (5) we deduce that:

(x∗k, 0) ∈ ∂̆5,6
2ǫk

f(xk, yk) ∀yk ∈ M(xk) k = 1, 2, ... (7)

Using the lower semicompactness of M around x̄, we can select sequence yk ∈
M(xk) which contains a subsequence convergent to some point ȳ ∈ Φ(x̄) with
respect to the norm ‖.‖3, then ϕ(xk, yk) = m(xk). On the other hand,

m(x̄) ≤ ϕ(x̄, ȳ) ≤ lim inf
(xk ,yk)

‖.‖5→ (x̄,ȳ)

ϕ(xk, yk) = lim inf
xk

‖.‖1→ x̄

m(xk) = m(x̄), and this

implies that

ϕ(x̄, ȳ) = m(x̄), i.e. ȳ ∈ M(x̄) and f(xk, yk) → ϕ(x̄, ȳ) as k → ∞ and by
applying (3) and (7) we conclude that (x∗, 0) ∈ ∂̆5,6f(x̄, ȳ) which proves (6).
Applying Theorem 4 from [4] for f , we have:

∂̆5,6f(x̄, ȳ) = (∇1,2
x ϕ(x̄, ȳ),∇3,4

y ϕ(x̄, ȳ)) + ∂̆5,6δ((x̄, ȳ), gphΦ).

Then,

∂̆5,6f(x̄, ȳ) = (∇1,2
x ϕ(x̄, ȳ),∇3,4

y ϕ(x̄, ȳ, )) + N̆5,6((x̄, ȳ), gphΦ).

Since (x∗, 0) ∈ ∂̆5,6f(x̄, ȳ), ȳ ∈ M(x̄), then:

(x∗, 0) ∈ (∇1,2
x ϕ(x̄, ȳ),∇3,4

y ϕ(x̄, ȳ, )) + N̆5,6((x̄, ȳ), gphΦ), ȳ ∈ M(x̄),

i.e: (x∗ −∇1,2
x ϕ(x̄, ȳ),−∇3,4

y ϕ(x̄, ȳ)) ∈ N̆5,6((x̄, ȳ), gphΦ). Applying the defini-
tion of the coderivy we deduct that:

x∗ −∇1,2
x ϕ(x̄, ȳ) ∈ D̆∗5,6Φ(x̄, ȳ)(∇3,4

y ϕ(x̄, ȳ)), ȳ ∈ ϕ(x̄)

this implies that:

x∗ ∈ ∇1,2
x ϕ(x̄, ȳ) + D̆∗5,6Φ(x̄, ȳ)(∇3,4

y ϕ(x̄, ȳ)), ȳ ∈ ϕ(x̄),

thus ∂̆1,2m(x̄) ⊂ ∇1,2
x ϕ(x̄, ȳ) + D̆∗5,6Φ(x̄, ȳ)(∇3,4

y ϕ(x̄, ȳ)) and we arrive at

∂̆1,2m(x̄) ⊂
⋃

ȳ∈M(x̄)

[∇1,2
x ϕ(x̄, ȳ) +D∗5,6Φ(x̄, ȳ)(∇3,4

y ϕ(x̄, ȳ))].
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Finally we give an example of a non Fréchet strictly differentiable mapping
with respect to the norm ‖ . ‖1 for which we can apply our theorem (Theorem
7), while the theorem from [6] given by Mordukhovich and Shao cannot be
used. Let Ω be a bounded domain in IR2 and let X = W 1,2

0 (Ω) be the Sobolev
space under its usual norm ‖ . ‖2= ‖ . ‖

W
1,2
0

(Ω)
. Let also p and ε be such that

0 < ε < 1, ε + 2 < p < ∞. Set ‖ . ‖1=‖ . ‖Lp(Ω). Remark that (X, ‖ . ‖2) is a

Banach separable space. Since W 1,2
0 (Ω) →֒ Lp(Ω), then (X, ‖ . ‖1, ‖ . ‖2) is a bi-

normed space such that ‖ . ‖2 is finer than ‖ . ‖1. Set g(u)=| u |ε+2 and consider
the functional G defined on X by: G(x) =

∫
Ω g(x(s))ds, then G is ‖ . ‖2-twice

Fréchet differentiable at every x ∈ X. Moreover, G1(x)h =
∫
Ω g′(x(s))h(s)ds,

and G2(x)(h1, h2) =
∫
Ω g′′(x(s))h1(s)h2(s)ds. G is (‖ . ‖1, ‖ . ‖2)-Fréchet

strictly differentiable at every x ∈ X and is not ‖ . ‖1-Fréchet strictly dif-
ferentiable at any point x of X, see [4]. Then our result given in Theorem 7 is
better adapted for this example than the one given by Mordukhovich and Shao
using the limiting subdifferential involving the norm ‖ . ‖1 in [6].
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