POISSON AND HEAT SEMIGROUPS FOR
THE BESSEL OPERATOR AND ON THE HYPERBOLIC SPACE

Abstract

In this paper we find explicit formulas for the Poisson and heat semigroups associated to the modified Bessel operator and on the hyperbolic spaces.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 2
Year: 2020

DOI: 10.12732/ijam.v33i2.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] Y. Abdelhaye, M. Badahi , M.V. Ould Moustapha, Wave kernel for the Schr¨odinger operator with the Morse potential and applications, F. J. Math. Sci., 102 (2017), 1523-1532.
  2. [2] J. Betancor, O. Ciaurri, T. Martnez, M. Perez, J.L. Torrea, J.L. Varona, Heat and poisson semigroups for Fourier-Neumann expansions, J. Semi. Forum., 73 (2006), 129142.
  3. [3] U. Bunke, M. Olbrich, A. Juhl, The wave kernel for the Laplacian on locally symmetric spaces of rank one, Theta functions, Trace formulas and the Selberg zeta function, Ann. Global Anal. Geom., 12 (1994), 357-405.
  4. [4] E.B. Davies, N. Mandouvalos, Heat kernel bounds on hyperbolic space and Kleinian groups Proc. London Math. Soc., 3 (1988), 182-208.
  5. [5] N. Ikeda, H. Matsumoto, Brownian motion one the hyperbolic plane and Selberg trace formula, J. Funct. Anal., 163 (1999), 63-110.
  6. [6] A. Intissar, M. V. Ould Moustapha, Solution explicite de l’´equation des ondes dans un espace sym´etrique de type non compact de rang 1, C. R. Acad. Sci. Paris., 321 (1995), 77-81.
  7. [7] I. Cardoso, On the pointwise convergence to initial data of heat and Poisson problems for the Bessel operator, J. Evol. Equ., 17 (2017), 953977.
  8. [8] R.P. Lax, R.S. Phillips, The asymptotic distibution of lattice points in Euclidean and non Euclidean spaces, J. Funct. Anal., 46 (1982), 280-350.
  9. [9] N.N. Lebedev, Special Functions and Their Applications, Dover Publications INC, New York (1972).
  10. [10] N. Lohoue, Th. Rychener, Die Resolvente von auf symmetrischen R¨aumen vom nichtkompakten, Typ. Comment. Math. Helv., 57 (1982), 445-468.
  11. [11] W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for Special Functions of Mathematical Physics, Springer-Verlag Berlin Heidelberg, New York (1966).
  12. [12] P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev., 34 (1929), 57-64.
  13. [13] M.V. Ould Moustapha, Wave kernel with magnetic field on the hyperbolic plane and with the Morse potential on the real line, Quantum Stud. Math. Found., 7 (2020), 65-75.
  14. [14] A.P. Prudnikov, Yu. A. Brychkov, O.I. Marichev, Special Functions, Integrals and Series, CRC Press, New York (1986).
  15. [15] S. Keles, S. Bayrakci, Square-like functions generated by the Laplace-Bessel differential operator, Adv. Diff. Equ., 281 (2014), 1687-1847.
  16. [16] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, New Jersey (1970).
  17. [17] R. Strichartz, A Guide to Distribution Theory and Fourier Transforms, CRC Press, Boca Racon, Ann Arbor, London, Tokyo (1993).
  18. [18] M. Taylor, Partial Differential Equations II, Springer, Applied Mathematics in Sciences No.116, Second Edition (2011).