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1. Introduction

The differential operators of Bessel type and the Laplace-Beltrami operator on
the hyperbolic space are known as very important operators in analysis and
its applications. This paper deals with the Poisson and heat semigroups as-
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sociated to these second order differential operators. In the last decades the
Poisson and heat semigroups associated to many second differential operators
have been studied and computed explicitly and there are many interesting pa-
pers published in this area of research (see for example Betancor et al. [2], Isolda
Cardoso [7], Keles and Bayrakei [15], Stein [16] and the references theirin).

The main objective of this paper is to solve explicitly the following Poisson
and heat problems

Louly, ) = —£yu(y,z), (y,0) € RY x R (1)
u(0,2) = uo(z), up € C§°(IRT) |

{ EnU(yaw) = _68_;2U(y7w)7 (y¢w) € JRJF x H" (2)

U(0,w) = Up(w), Uy € CS°(IH™)

LV (t,w) = ZV(t,w), (t,w) € RT x H" 3)
V(0,w) = Vp(w), Vo € C§°(H™) ’
and
L(t,x) = %v(t,x), (t,z) e R" x R ()
’U(O,J}) = Uo(l‘),’vo € C(C))O(]RJF) ’
where
0? 0
a _ 2 Y Y 2.2
LY =x 8x2+$8x a“x”,
and
0? 0 (n—1)2
_ 2 27 _
L, =x,Ny_ 1+ o:2 +(2—n)x, oz, + YR

are respectively the Bessel operator on IR" and the Laplace-Beltrami operator
on the half space model of the hyperbolic space IH™".
2. Poisson semigroup associated to Bessel operator

In this section we give explicit formulas for the Poisson semigroup associated
to the Bessel operator L?, that is we prove the following theorem.
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Theorem 1. For a € IR* the Poisson problem (1) has the solution given
by

o) = [ bl uale!) o)

with

lal xa' siny Ky <|a\\/x2 + 2?2 — 2z2! cos y)
pa(yvxvx/) =

; (6)

7T Va2 + 2’2 — 2z’ cosy

and K7 is the modified Bessel functions of second kind.

Proof. To see that the function u(y, =) satisfies the Poisson equation in (1),
set o(y,x,2") = ¢(2), with z = 22 4+ 2/ — 222’ cos y, then we have

590 ! 6¢ § / 2 °
- = (2z — 99 0% _ (99 o°¢ + 59
- (22 — 22" cosy) 2 a2 (2z x' cosy) o o
* 0 8¢ 0? 82¢ 8¢
P . P : 2
—y = 222’ sin y—z, —y2 = (23:33’ Sin y) o) + 2z Ccos Yy o

By the above formulas we have

o2 026 8¢ a
a . — 2 i Yo
<L i 8y2> o= <Z8z2 L P ¢> '

and we see that the first equation in the problem (1) is equivalent to

2 a’
2°Q. + 20, — qub =0,

which is a particular case of Lommel differential equation for modified Bessel
functions
0? 0
2984 (1-20)2 92 — (7270 + (0% — P76 =0,
with « = 0, v = 0, 8 = 1 and v = 1/2, an approprite solution is ¢(z) =
cKo(2'/?), where Ky is the modified Bessel function of second kind.
This means that the function

o(y,z,2') = cKj (|a\\/m2 + 22 — 2z’ cos y)
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satisfies the equations
a / a / 82 /
Lx@(y7$7$ ) = Lx’@(y7$7$ ) = _8—y2¢(y7$7$ )7
and in consequence it is a solution of the first equation in (1).
By the formula K|(z) = —K(z) we see that
10
n_ 9 ’
pa(y7$7$) - ﬂ_ay@(y7$7$)

and p,(y, z,2’) satisfies the same equation in (1).
To finish the proof of Theorem 1 it remains to show the limit condition.

For thisl set 2 = 22 + 22 — 222’ cosy = Zxx’(x;:;”,lg —cosy) and z = e~ and
2’ =X to obtain:
/ X -X
z = 4eX X {sinh? (27) +sin?(y/2)}.
Replacing in (5) we obtain:
o0
u(y,a) = (. X) = [ Paly X, Xl X)X’
0

with

o XX 2 siny Ky <|a\\/sinh2 @ + sin? %)

Pa(ana X/) = _

T \/sinh2 % + sin? 4

Setting sinh (XIQ_X) = ssiny/2 or X’ = X + 2argsinh(ssiny/2) we can write

0o
u(y,z) = u(y, X) = M/ X +argsinh(ssiny/2) siny
T J-oo

K, (2|a‘€X+arg sinh(ssiny/2) sm(y/2)m)
V14 s?
" Uo(X + argsinh(ssiny/2))2ds
V1 + s2sin?(y/2) '
Now we use the asymptotic formula for the modified Bessel function of second

kind (Lebedev [9], p.136) K, (z) ~ 2—1® > — 0 we obtain

2V

. . . 1 [ ds ~
Tim u(y,2) =l iy, X) = do(X)~ /OO = 0(X) = uo(e)

and this finishes the proof of Theorem 1. O

X
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3. Poisson equation on the hyperbolic space

In this section we consider the Poisson equation on the hyperbolic upper half
space.

Let H" = {w = (21,22, ...7) € IR",z,, > 0} be the hyperbolic half space
endowed with the usual hyperbolic metric

_dxf+dad 4 ..+ da?
= .
n

ds?

)

the metric ds is invariant with respect to the motion group
G = SO(n, 1), the hyperbolic volume form du(w) is

dridxs...dxy,
dp(w) = —H—

)
n
xn

and the hyperbolic distance p(w,w’) given as

12
2 lw — w'|
cosh?(p(w,w’)/2) = e +1,

with the Laplace Beltrami operator

Lo =200+ (2= )50+ ((n = 1)/2)%,

where A, = Z?Zl % is the Euclidean Laplacian on IR"™. Before giving the
J

main result of this section we start by the following lemma in which we compute

the Fourier transform of the Poisson semigroup pj¢| for the Bessel operator with

respect to the parameter [].

Lemma 2. Set§ = (&1,82,.,&n—1) and x = (21,72, ..., Tp—1), let pig|(y, Tn,
x]) be the kernel of the Poisson semigroup for Bessel operator given in (6), then
the following formula holds:

2=DR2P((n +1)/2)  xpxl,siny

F 1 gy ns )] (z) = - (1 22yt

with z = /22 + 22 — 22/ cos y.
Proof. From the formula giving the Fourier transform of a radial function

—1 _ 1-n/2 A n/2
FHA) = ol 72 [ s (plaD) f(o)o 2,
0
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we obtain

_ Tpx, SNy, 5,
F [P0, () = 2200 =

400 ntl
<] Ki(pl2) s (pla])p = dp.

By the formula from Prudnikov et al. ([14], p.365)

+o0
/ 21, (br) K, (cx)dr = Al
0

where
D((a+ 1+ v)/20((0 + = v)/2)

P(p+1)

Ag = 20 2ppe (o)

b2
xoF ((a4+p+v)/2, (a+p—v)/2,u+ 1’_0_2)’

with « = (n+3)/2,u = (n—3)/2,v =1,b = |z|,¢c = z we have

“+00

n+1l n+3)/2
[ K2 aa (r el dr = ATCY

A(n+3)/2 _ |x‘(3—n)/2 2(n71)/27‘$|(n_3)/2

1, (n—-3)/2 — s g [((n+1)/2)

J)Q
xF (((n-i— 1)/2, (n—1)/2(n —1)/2 — L) .

22

Now from the formula F (a,b,b, 2) = (1 — 2)”“, we obtain the result of Lemma
2. O

Theorem 3. The Poisson problem (2) in hyperbolic space IH™ has the
solution given by

mezﬂﬂ%mmmwwwmw

with

I'((n+1)/2) siny

PéH Jw,w') = . 7
W ) m(n /2 (2 cosh d(w, w') — 2 cos y) T/ @)
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Proof. By the following formula intertwining the Laplace-Beltrami operator
L,, on the hyperbolic space JH™ and the Bessel operator LI¢

F [an 0 70/2L,2700%)] (6) = LEFo(@),

the Poisson problem on the hyperbolic space (2) is transformed into the Bessel-
Poisson problem (1), with

uly,wa) = F 20720y, 2,20)] (€)
and U()(l‘n) = xgzlin)/Q}_[UO(xvxn)](g)
F o020y, 2,20)] ()

oo dl'/
— [ Pl ) F 0] (6,0 S
0

;7 )
n

U(y7 €z, $n)

= [ Rt E 0 (6 2] ()

n
;7 ?
xn

Uy, 0n) = (2) 2 [ Y F [Py 2t)] (@)

j2 dy

;7 0
n

XUO(:L‘,JL‘;):L‘;EP")
x

Uly, z, ) = (27T)_(”_1)/2/0 L F T Paty e 2] (@ - )

/ /
gdx’dx,

m
xn

<Ol 2l

)

U(y,x,xn) = / Pf (y,W,w,) uo(w')d,u(w'),
with

I'((n+1)/2) siny
m(n /2 (9 cosh d(w, w') — 2 cos y) "/

PT{,H (vaaw/) =

and the proof of Theorem 3 is finished. U
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Proposition 4. Let PM (y,w,w’) be the Poisson kernel on the hyperbolic
space IH"™ then we have:

i) (~ s ) P (s plw, ) = P2y (3, plao, ).

n+1(y P) . - H
11) fr \/C05h2 p/2—cosh? /2 Slnhpdp - Pn (y,'r).

Proof. The part i) is simple, to prove ii) set

_ Siny 2 P P 2 f -1 .
I —/T Crn+1 (comh p — cosy)FO2 (cosh 5 — cosh 2) 2 sinhrdp,

r-va[ ¢ siny h hr)? sinhrd
= : n+1(COShp—cosy)(”+2)/2 (cosh p — coshr) 2 sinhrdp,

with C41 = (2(7:;?;7?2/)2/)2 Set cosh p = o and set ¢ — coshr = 1, we see that

[ =V2Cn4 siny (0 —cosy)”~ (nt2)/2 (o — cosh 7“)_1/2 do,

coshr

I =20, siny/o (11 — (cosy — cosh r))_(”+2)/2 M_I/Qd/ﬁ,

I = /20,1 siny (coshr — cos y)*(”H)/2 X

| w2y,
0 (coshr — cosy)

By the formula (Magnus et al. [11], p.13)
o0
/ t" N1+ bt) " Ydt = b " B(x,y),
0

where B is the beta function, with = 1/2 and y = (n + 1)/2 we obtain
I = /2C,41siny (coshr — cosy) "™ V/2 B(1/2, (n + 1)/2),

;- 3 D t1)/2)

—(n+1)/2 _ pH
9(n+2)/2 1 (n+1)/2 ! =P, (y,r),

siny (coshr — cosy)

thus we obtain ii) and the proof of Proposition 4 is finished. O
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4. Heat semigroup on the hyperbolic space

In this section we give a new explicit formula for the heat kernel on the hyper-
bolic space IH™.

Proposition 5. Let e~9W=Ln and e“r be the Poisson and heat semi-
groups on the hyperbolic space IH" then we have:
i) etbn = (th)_l/QLy}]L [@} (1/4t), where Ly}l is the Laplace inverse
transform with respect to 2.
i) (= sy ) KM (1 plw,w) = K (£ plw,w'))

jii) [ @) iy pdp = K (1,r).
T \/cosh? p/2—cosh® /2 noAr

Proof. To prove i) use the subordination formula (Strichartz [17], p. 50)
e _ i /OO efquufl/Qef)\Q/Z,Ludu7
Yy VT Jo

or \/EQT_M =L (uil/Qe*)‘Q/‘l“) (y?), where (Lf)(p) is the Laplace transform,

and
/\2

— eiy)‘
e du = ul/QL;Ql <\/E ) (u).
Yy

Set A = /£L,, and ﬁ =t in the last formula we can write

— YA /_En
e'n = (41) /L) l%l (1/40),

where L~ is the inverse Laplace transform.
The parts ii) and iii) are consequence of i) and Proposition 4. O

Theorem 6. The heat Cauchy problem on hyperbolic space (3) has the
unique solution given by

Vit w) = /H Kot w0, 1) Vo () du(w'),
with

, I'((n+1)/2)
Ky (t,w,w') = 2t 1)/2 /212
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o+ico exp (%) siny
« / dy. (8)
g

_iso (cosh p(w,w") — cos gy)(n+1)/2

Proof. From (7) we see the formula (8) and the proof of Theorem 6 is
finished. O

Corollary 7. (Davies-Mandouvalos [4] and Lohoue and Rychener [10])
Let K, (t,w,w’) be the heat kernel on the hyperbolic space IH™ then we have

n—1 —p?
. 9 2
i) For n odd Kp(t,w,w') = (_ 27rsinhp8p) (fﬁ/??
ii) For n even K, (t,w,w') =
n—2 2
P = 12
<_727rsinhp8p> fpoo (cosh2 5/2 — cosh? p/2) ﬁsds.

Proof. Set cosy = z,

(arccos 2)2

n_ T(n+1)/2) o e @
Kn(t, w,w) = 20n+1)/27n/2¢1/2 [ - . (cosh p(w,w') — z)n+1)/2 =

To prove the first statment i) we have

(arccos z)2

1 o—+100 i
Ki(t,w,w') = 7/ c - dz,

~ol/2t1/2 | . (cosh p(w,w') — )
that is
arccos z 2
Ky = 1 B o)
LW, W )= 5 T a1/ 1165 z=coshp (cosh p(w,w’) = 2) |’
and 1 2
Kl(t,wy w/) = e_it7

using ii) of 5 we have 1i).
To prove iii), we can write

otico (arccos 2)2

1 e 4t
Ks(t )= s I
3(t, w,w') 9273/241/2 /Uioo (cosh p(w,w") — 2)? -
and
/ 1 e 4t
K?)(tvwaw ) = 7R68Z:C08hp

- 2273/241/2 (cosh p(w,w') — 2)% |’
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this gives
1 d (arccos 2)2
/ - - . e =7
Ka(t,w,wf) = 2273/2¢1/2 z—lg}’)lshp dz [6 i ] ’
and finally
1 2
Ks(t,w,u') = — L7

(47t)3/2 sinh p
using iii) of Theorem 5 we have

2

Ks(t,w,w') = /p (cosh2 5/2 — cosh? p/2)_1/2 ﬁsds, 9)

Combining (9) and the part i) of Proposition 5 we obtain ii) and the proof
of Corollary 8 is finished. O

Note that the wave equation on hyperbolic space is studied in Intissar-Ould
Moustapha, [6], Bunk et al. [3], Lax-Phillips [8].
5. Heat kernel for the Bessel operator

Proposition 8. i) The modified Laplace-Beltrami operator Lo on the
hyperbolic space and Bessel operator L* on IR" are connected via the formulas

For |3 P L20?0 (a,22) = L7 (F@) (A, 22),

where the Fourier transform is given by

S e~ f(x)dx
FA© = 7= /IR f(z)d

ii) The heat kernels for Bessel operator H(t,zq,x%) is connected to the heat
kernel on the hyperbolic half plane Hs(t, z,2") via the formula

Ha(ty T2, J:/Z)

e @ T Ho (8, 2, 2 )d(zq — o).

\/$2$2

Proof. The proof of this proposition is simple and therefore it is left to the
reader. O
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Theorem 9. The heat Cauchy problem (4) for the Bessel operator L* has
the unique solution given by

ult, z) = / Kalt, 2,2 Yuo(a')da,
R

with 1
Kalt,2,2) = Tomm
S 2
x/ seTJO(\a|\/4:1::1:/cosh2 5/2 — x? — x'?)ds.
cosh? 3/22%

Proof. The proof of this theorem follows from Proposition 8, the Fubini
theorem and the formula (Lebedev [9], p.114),

—1

Jo(2) = grmp S (1= 132 cosztdt = L [1,(1 - £2)72 e~i#tedy. O

6. Applications

In this section we give some applications of our results. As an application of
Theorem 1 and 9 we give the following corollary giving explicit solution to the
Poisson and heat problems with Morse potential Morse [12]. For recent work on
Morse potential, the reader can consult (Abdelhaye et al. [1], Ikeda-Matsumoto
[5] and Ould Moustapha [13]).

Corollary 10. For a € IR the problem

My, X) = = iy, X), (y, X) € R* x IR
(0, X) = a(X)o, Uy € C(IRT)

has the solution given by
o0
(0, X) = [ Paly X, X'l X')ax'
0

with

1l XX siny Ky <|a\\/sinh2 % + sin? y/2>

~ a

Pa(y7X7X/):? X_x' ’
\/sinh2 (_72) + sin?y/2

where K7 is the modified Bessel functions of second kind.
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Proof. Set X = Inz, the problem (10) is transformed into the problem (1)
and it is not hard to see the result of theorem from 1. O

Theorem 11. The heat Cauchy problem with Morse Potential

{MaV(t X)=34V(t,X),(t,X) e R* xR (1)

(LX) = V(X)o, o € C(RY)

has the unique solution given by
V(t.X) = [ Kalt, X X)X
R

with )
N —
Ka(t7X7X)_ 4ﬁt3/2

o0 752 !
y / se it Jo(2lale X2, feosh? /2 — cosh?((X — X)/2))ds
X=X

Proof. Set X = Inz the problem (11) is transformed into the problem (4)
and it is not hard to see the result of theorem from Theorem 9. Ol

Remark 12. The Poisson and heat semigroups of the operator of Bessel

type
2

5 d d
Lo =2°—5 + (20 +3)— + 2% + (a + 1)?

dx? dx
are considered in Betancor et al. [2].
It is not hard to see that
ca— 0? 0
O L e = L7 = 52 W—I—x%—l—m

Corollary 13. Ifa € iIR* and a = ib, the problem (1) has the solution
given by

oo dlj
o) = [ ool 5
0

with

] T smyH <|b|\/m2+$’2 2xa:’cosy)

9

2 | Vo2 + 22 — 222/ cos y
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—1
oy, z,2') = T%Hél) (\b\\/CL‘Q + 22 — 2za’ cos y) ,

wih Hfl), H(()l) are the Bessel function of the third kind.

—1

Proof. By formula K,(ze™2 ) = 1/2i7remTqu(,n)(z) (Magnus et al. [11],
p.67). O

The last application of our result is the explicit formula of the Poisson
semigroup on the sphere S”.

Corollary 14. The Poisson equation in the sphere S™ has the unique
solution given by

) = [P (g0) w0l (),

with
I'((n+1)/2) sinhy

Pf Jw,w') = .
v ) 7 H/2 (92 coshy — 2 cos d(w, w')) /2

Proof. By comparing the radial parts of the Laplace Beltrami operators on
the spaces IH™ and S™ given respectively by

2 0 n—1
H" _ 2
A —W—l—(n—l)cothra—k( 9 )
and ) 5
A —w—i-(n—l)cotra—( 5 )=,
Corollary 14 can be seen from Theorem 3 by an argument of analytic continu-
ation. ]

Note that the result of this corollary agrees with the formula (4.9) in Taylor
18], p.114.
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