HYERS-ULAM STABILITY OF A PERTURBED
GENERALISED LIENARD EQUATION

Abstract

In this paper, we consider the Hyers-Ulam stability of a perturbed generalized Lienard equation, using a nonlinear extension of Gronwall-Bellman integral inequality called the Bihari integral inequality.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 3
Year: 2019

DOI: 10.12732/ijam.v32i3.9

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] C. Alsina and R. Ger, On some inequalities and stability result related to the exponential function, J. Inequl. Appl., 2 (1988), 373-380.
  2. [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
  3. [3] I. Bihari, Researches the boundedness and stability of the solutions of nonlinear differential equations, Acta. Math. Acad. Sc. Hung., 7 (1957), 278-291.
  4. [4] I. Bihari, A generalisation of a lemma of Bellman and its application to uniqueness problem of differential equations, Acta Math. Acad. Sc. Hung., 7 (1956), 71-94.
  5. [5] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223-237.
  6. [6] J. Huang and Y. Li, Hyers-Ulam stability of linear functional differential equations. J. Math. Anal. Appl., 426 (2015), 1192-1200.
  7. [7] D.H. Hyers, On the stability of the linear functional equation, Proc. of the Nat. Acad. Sci. of the USA, 27, 222-224.
  8. [8] A. Javadian, E. Sorouri, G.H. Kim, M. Eshaghi Gordji, Generalized HyersUlam stability of the second order linear differential equations, J. of Applied Math., 2011 (2011), Art. 10813137, 10 pp; doi 10.1155/2011/813137.
  9. [9] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135-1140.
  10. [10] A. Kroopnick, Properties of solutions to a generalised lienard equation with forcing term, Appl. Math. E-Notes, 8 (2008), 40-41.
  11. [11] A. Kroopnick, Note on bounded Lp-solutions of generalized Lienard equation, Pacific J. Math., 94 (1981), 171-175.
  12. [12] R.S. Murray, Schum’s Outline of Theory and Problem of Calculus, SI (Metric) Edition, Internat. Edition (1974).
  13. [13] Nkashama, Periodically perturbed non conservative systems of Lienard type, Proc. Amer. Math. Soc., 111 (1991), 677-682.
  14. [14] M. Obloza, Hyers-Ulam stability of the linear differential equations, Rocznik Nauk, Dydakt-Dydakt. Prac. Mat. 13 (1993), 259-270.
  15. [15] S.B. Ogundare and A.U. Afuwape, Boundedness and stability properties of solutions of generalized Lienard equation, Kochi J. Math., 9 (2014), 97-108.
  16. [16] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. of the Amer. Math. Soc., bf 72, No 2 (1978), 297-300.
  17. [17] S. Takahasi, T. Miura, and S. Miyajima, On the Hyers-UIam stability of the Banach space-valued differential equation y′ = λy, Bull. of the Korean Math. Soc., 392 (2002), 309-315.
  18. [18] S.M. Ulam, Problems in Modern Mathematics Science Editions, Chapter 6, Wiley, New York (1960).
  19. [19] A. Zada, O. Shah, R. Shah, Hyers-Ulam stability of non-autonomous systems in terms of boundeness of Cauchy problems, Appl. Math. Comput., 221 (2015), 512-518.