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Abstract: In this paper, we consider the Hyers-Ulam stability of a perturbed
generalized Lienard equation, using a nonlinear extension of Gronwall-Bellman
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1. Introduction

Generalised Lienard equation has been considered by many researchers. These
include: Kroopnick (see [10], [11]) who studied properties of solutions to a
generalized Lienard equations with forcing term and also studied bounded Lp-
solutions of generalized Lienard equation, Nkashama [13] considered periodi-
cally perturbed non conservative system of Lienard type. In 2014, Ogundare
and Afuwape [15] studied conditions which guarantee boundedness and stability
properties of solutions of generalized Lienard equations. However, none of these
researchers have studied the Hyers-Ulam stability of the perturbed generalized
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Lienard equations of the form

u′′ + c(t)f(u(t))u′(t) + a(t)g(u(t)) = P (t, u(t)), (1)

where f ∈ C(R+,R+), g ∈ C(R+,R+), c, a ∈ C(I,R+), for R+ = [t0,∞), I =
(t0, b)(b ≤ ∞), P ∈ C(I×R+,R+). In this paper, we shall consider Hyers-Ulam
stability of (1) and also the case where P (t, u(t)) = 0.

The stability problem of functional equation started with the question con-
cerning stability of group homomorphism proposed by Ulam [18] in 1940 dur-
ing a talk before a Mathematical Colloquium at the University of Wincosin,
Madison. In 1941, Hyers [7] gave a solution of Ulam’s problem for the case of
approximate additive mappings in the context of Banach spaces. The result
obtained by Hyers opened up research in Hyers-Ulam stability. Rassias [16] in
1978 generalized the theorem of Hyers by considering the stability problem of
the unbounded Cauchy differences

||f(x+ y)− f(x)− f(y)|| ≤ ǫ(||x||p + ||y||p). t > 0 p ∈ [0, 1). (2)

This phenomenon of the stability that was introduced by Rassias leads to Hyers-
Ulam-Rassias stability (or the generalized Hyers-Ulam stability), see [8].

Thereafter, the result reported by Rassias was improved, see [14], [2], [5],
[1], [17], [6], [19], [9].

2. Preliminaries

We present the following definitions, lemmas and theorems for subsequent use
in this work.

Definition 1. Equation (1) is Hyers-Ulam stable, if there exists a constant
K > 0 and ǫ > 0 such that for u(t) ∈ C2(I,R+), satisfying

|u′′ + c(t)f(u(t))u′(t) + a(t)g(u(t)) − P (t, u(t))| ≤ ǫ, (3)

there exists a solution u0(t) ∈ C2(I,R+) of the equation (1), such that |u(t)−
u0(t)| ≤ Kǫ, where K is called Hyers-Ulam constant with initial condition

u(t) = u′(t) = 0. (4)

Theorem 2. (Generalized First Mean Value Theorem, [12]) If f(t) and g(t)
are continuous in [t0, t] ⊆ I and f(t) does not change sign in the interval, then

there is a point ξ ∈ [t0, t] such that

∫ t

t0

g(s)f(s)ds = g(ξ)

∫ t

t0

f(s)ds.
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Definition 3. A function ω : [0,∞) → [0,∞) is said to belong to a class
S if:

i ω(u) is nondecreasing and continuous for u ≥ 0.

ii ( 1
v
)ω(u) ≤ ω(u

v
) for all u and v ≥ 1.

iii there exists a function φ, continuous on [0,∞) with ω(αu) ≤ φ(α)ω(u)
for α ≥ 0.

Lemma 4. (see [3], [4]) Let u(t), f(t) be positive continuous functions
defined on a ≤ t ≤ b, (≤ ∞) and K > 0, M ≥ 0, further let ω(u) be a
nonnegative nondecreasing continuous function for u ≥ 0, then the inequality

u(t) ≤ K +M

∫ t

a

f(s)ω(u(s))ds, a ≤ t < b. (5)

implies the inequality

u(t) ≤ Ω−1

(

Ω(k) +M

∫ t

a

f(s)ds

)

, a ≤ t ≤ b′ ≤ b. (6)

where

Ω(u) =

∫ u

u0

dt

ω(t)
, 0 < u0 < u. (7)

In the case ω(0) > 0 or Ω(0+) is finite, one may take u0 = 0 and Ω−1 is the
inverse function of Ω and t must be in the subinterval [a, b′] of [a, b] such that

Ω(k) +M

∫ t

a

f(s)ds ∈ Dom(Ω−1). (8)

3. Main Result

The main results of this work are given in the following theorems.

Theorem 5. Let the functions a, f, c, g and P be as defined earlier such
that a(t) ≥ δ, a′(t) ≤ 0 on I with f ∈ S. Suppose that

lim
t→∞

∫ t

t0

c(s)ds = M < ∞ (9)

and

G(u(t)) =

∫ t

t0

g(u(s))ds < ∞, (10)
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then equation (1) is Hyers-Ulam stable with the Hyers-Ulam constant K given
by

K =
1

δ
(L+ LA|u(ξ)|) Ω−1

(

Ω(1) +
λ2

δ
M

)

, (11)

where Ω is as defined in (7).

Proof. It follows from inequality (3) that

−ǫ ≤ u′′(t) + c(t)f(u(t))u′(t) + a(t)g(u(t))u′(t)− P (t, u(t) ≤ ǫ. (12)

Multiplying (12) by u′(t), gives

− ǫu′(t) ≤

u′′(t)u′(t) + c(t)f(u(t))(u′(t))2 + a(t)g(u(t)u′(t)− P (t, u(t))u′(t) ≤ ǫu′(t).
(13)

Since G(u(t)) in (10) is nondecreasing, monotonic and belongs to class S, we
have from (13) that

− ǫu′(t) ≤

u′′(t)u′(t) + c(t)f(u(t))(u′(t))2 + a(t)
d

dt
G(u(t)) − P (t, u(t))u′(t) ≤ ǫu′(t).

(14)

Integrating (14) from t0 to t, we have

− ǫ

∫ t

t0

u′(s)ds ≤
1

2
(u′(s))2 +

∫ t

t0

c(s)f(u(s))(u′(s))2ds

+

∫ t

t0

a(s)
d

ds
G(u(s))ds −

∫ t

t0

P (s, u(s))u′(s)ds ≤ ǫ

∫ t

t0

u′(s)ds. (15)

It follows that

∫ t

t0

c(s)f(u(s))(u′(s))2ds

+

∫ t

t0

a(s)
d

ds
G(u(s))ds −

∫ t

t0

P (s, u(s))u′(s)ds ≤ ǫ

∫ t

t0

u′(s)ds. (16)

Integrating (14) by parts, we have
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∫ t

t0

c(s)f(u(s))(u′(s))2ds+ a(t)G(u(t))

−

∫ t

t0

a′(s)G(u(s))ds −

∫ t

t0

P (s, u(s))u′(s)ds ≤ ǫ

∫ t

t0

u′(s)ds, (17)

that is

a(t)G(u(t)) ≤ ǫ

∫ t

t0

u′(s)ds−

∫ t

t0

c(s)f(u(s))(u′(s))2ds

+

∫ t

t0

a′(s)G(u(s))ds +

∫ t

t0

P (s, u(s))u′(s)ds. (18)

Since a′(t) ≤ 0 and a(t) ≥ δ, we have

δG(u(t)) ≤ ǫ

∫ t

t0

u′(s)ds−

∫ t

t0

c(s)f(u(s))(u′(s))2ds

+

∫ t

t0

P (s, u(s))u′(s)ds. (19)

Taking the absolute value of both sides, we get

δ|G(u(t))| ≤ ǫ

∫ t

t0

|u′(s)|ds+

∫ t

t0

c(s)f(|u(s)|)(|u′(s)|)2ds

+

∫ t

t0

|P (s, u(s))||u′(s)|ds. (20)

Suppose |G(u(t)| ≥ |u(t)|, |P (t, u(t))| ≤ A|u(t)| and

∫ t

t0

|u′(s)|ds ≤ L for L >

0. It follows that

|u(t)| ≤
1

δ
ǫL+

1

δ

∫ t

t0

c(s)f(|u(s)|)(|u′(s)|)2ds

+
1

δ
A

∫ t

t0

|u(s))||u′(s)|ds. (21)

By Theorem (2), for t0 < ξ < t, we have

|u(t)| ≤
1

δ
ǫL+

1

δ

∫ t

t0

c(s)f(|u(s)|)(|u′(s)|)2ds+
1

δ
Au(ξ)

∫ t

t0

|u′(s)|ds. (22)
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This gives

|u(t)| ≤
1

δ
ǫL+

1

δ
LA|u(ξ)|+

1

δ

∫ t

t0

c(s)f(|u(s)|)|u′(t)|2ds. (23)

It follows that

|u(t)| ≤
1

δ
ǫL+

1

δ
LA|u(ξ)| +

(|u′(t)|)2

δ

∫ t

t0

c(s)f(|u(s)|)ds. (24)

Let |u′(t)| ≤ λ, for λ > 0 this gives

|u(t)| ≤
1

δ
ǫL+

1

δ
LA|u(ξ)|+

λ2

δ

∫ t

t0

c(s)f(|u(s)|)ds. (25)

Let us set

R =
1

δ
ǫ (L+ LA|u(ξ)|) and ǫ ≥ 1. (26)

Using (26) and the fact f ∈ S, (25) becomes

|u(t)|

R
≤ 1 +

λ2

δ

∫ t

t0

c(s)f(
|u(s)|

R
)ds. (27)

Setting
|u(t)|

R
= z(t), then (27) becomes

z(t) ≤ 1 +
λ2

δ

∫ t

t0

c(s)f(z(s))ds (28)

Let ω(z(t)) = f(z(t)), By (7), we obtain

z(t) ≤ Ω−1

(

Ω(1) +
λ2

δ

∫ t

t0

c(s)ds

)

.

Substituting for z(t), we have

|u(t)| ≤ RΩ−1

(

Ω(1) +
λ2

δ

∫ t

t0

c(s)ds

)

.

Replacing R by (26), we obtain

|u(t)| ≤ ǫ
1

δ
(L+ LA|u(ξ)|) Ω−1

(

Ω(1) +
λ2

δ

∫ t

t0

c(s)ds

)

.

By (9), we have

|u(t)| ≤ ǫ
1

δ
(L+ LA|u(ξ)|) Ω−1

(

Ω(1) +
λ2

δ
M

)

.

Hence,
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K =
1

δ
(L+ LA|u(ξ)|) Ω−1

(

Ω(1) +
λ2

δ
M

)

.

Since,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kǫ.

Therefore,

|u(t)− u0(t)| ≤ Kǫ.

Example 6. Consider the equation

u′′(t) + (t+ 1)−2u2u′ + t4u4 = 2u2(t).

The equation is Hyers-Ulam stable by the conditions of Theorem 5.

Next we consider the case P (t, u(t)) = 0.

Theorem 7. Let all the conditions of Theorem 5 remain valid with

P (t, u(t)) = 0.

Equation (1) is Hyers-Ulam stable with Hyers-Ulam constant defined as

K =
1

δ
(L)

(

Ω(1) +
λ2

δ
M

)

.

Proof. From inequality (3), we have

−ǫ ≤ u′′(t) + c(t)f(u(t))u′(t) + a(t)g(u(t))u′(t) ≤ ǫ. (29)

Since

P (t, u(t)) = 0,

using equation (10), we have

−ǫ ≤ u′′(t) + c(t)f(u(t))u′(t) + a(t)
d

dt
G(u(t)) ≤ ǫ. (30)

Multiplying (30) by u′(t), we obtain

−ǫu′(t) ≤ u′′(t)u′(t) + c(t)f(u(t))(u′(t))2 + a(t)
d

dt
G(u(t))u′(t) ≤ ǫ. (31)
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Integrating (31) from t0 and t, we get

− ǫ

∫ t

t0

u′(s)ds ≤
1

2
u′2(t)

+

∫ t

t0

c(s)f(u(s))(u′(s))2 +

∫ t

t0

a(s)
d

ds
(G(u(s)))ds ≤ ǫ

∫ t

t0

u′(s)ds.

It follows that

∫ t

t0

c(s)f(u(s))(u′(s))2ds

+

∫ t

t0

a(s)
d

ds
G(u(s))ds ≤ ǫ

∫ t

t0

u′(s)ds.

Integrating by part, we get

∫ t

t0

c(s)f(u(s))(u′(s))2ds

+ a(t)G(u(t)) −

∫ t

t0

a′(s)G(u(s))ds ≤ ǫ

∫ t

t0

u′(s)ds.

Since a′(t) ≤ 0 and a(t) ≥ δ > 0, we obtain

δG(u(t)) ≤ ǫ

∫ t

t0

u′(s)ds −

∫ t

t0

c(s)f(u(s))(u′(s))2ds. (32)

Taking the absolute value (32), we have

δ|G(u(t))| ≤ ǫ

∫ t

t0

|u′(s)|ds +

∫ t

t0

c(s)f(|u(s)|)(|u′(s)|)2ds. (33)

Setting

∫ t

t0

|u′(s)|ds ≤ L, for L > 0, we obtain

|G(u(t))| ≤
1

δ
ǫL+

1

δ

∫ t

t0

c(s)f(|u(s)|)(|u′(s)|)2ds. (34)

Suppose |G(u(t))| ≥ |u(t)|, then (34) becomes

|u(t)|

P
≤ 1 +

1

δ

∫ t

t0

c(s)f(
|u(s)|

P
)(|u′(s)|)2ds (35)

for
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P =
ǫ

δ
L, (36)

and it follows that

|u(t)|

P
≤ 1 +

(|u′(t)|)2

δ

∫ t

t0

c(s)f(
|u(s)|

P
)ds. (37)

Let |u′(t)| ≤ λ, using this in (3.31), we get

|u(t)|

P
≤ 1 +

λ2

δ

∫ t

t0

c(s)f(
|u(s)|

P
)ds. (38)

Setting |u(t)|
P

= z(t), (37) becomes

z(t) ≤ 1 +
λ2

δ

∫ t

t0

c(s)f(z(s)ds. (39)

Using Lemma 4, for ω(z(t)) = f(z(t)) with Ω defined as in (7), we obtain

z(t) ≤ Ω−1

(

Ω(1) +
λ2

δ

∫ t

t0

c(s)ds

)

.

By (9), we have

z(t) ≤ Ω−1

(

Ω(1) +
λ2

δ
M

)

.

Substituting for z(t), we have

|u(t)| ≤ PΩ−1

(

Ω(1) +
λ2

δ
M

)

.

Replacing P, with (36), we have

|u(t)| ≤
ǫ

δ
(L)Ω−1

(

Ω(1) +
λ2

δ
M

)

,

where

K =
1

δ
(L)Ω−1

(

Ω(1) +
λ2

δ
M

)

.

Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ Kǫ

with condition (4).
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Example 8. Consider the equation

u′′ + t−2u2u′ + t−4u2 = 0, for t > 0,

This equation is Hyers-Ulam stable by all the properties of Theorem 7.
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