ON A CLASS OF SOLUTIONS FOR
THE HYPERBOLIC DIOPHANTINE EQUATION

Abstract

Let $\mu\geq2$ be a natural number. In this paper, we find all the solutions of the Hyperbolic Diophantine equations $D: x^2-(\mu^2-\mu)y^2-(4\mu+2)x+(6\mu^2-6\mu)y-(5\mu-13)\mu=0$ over $\mathbb{Z}$. We also derive some recurrence relations on the integer solutions $(x_n,y_n)$ of $D.$

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 3
Year: 2019

DOI: 10.12732/ijam.v32i3.6

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] I. Niven, H.S. Zuckerman, H.L. Montgometry, An Introduction to the Theory of Numbers, Fifth Edition, John Wiley and Sons, Inc., New York (1991).
  2. [2] D.M. Burton, Elementary Number Theory, Tata McGraw-Hill Ed. (2012).
  3. [3] L.J. Mordell, Diophantine Equations, Academic Press, New York (1969).
  4. [4] M. Somanath, J. Kannan, K. Raja and V. Sangeetha, On the integer solutions of the Pell equation x2 = 17y2 − 19t, JP Journal of Applied Mathematics, 15, No 2 (2017), 81-88.
  5. [5] M. Somanath, J. Kannan, On a class of solutions for a Diophantine equation of second degree, Intern. J. of Pure and Applied Math., Special Issue, 117, No 12 (2017), 55-62.
  6. [6] D. Hensley, Continued Fractions, World Scientific Publishing, Hackensack, N.J. (2006).
  7. [7] T. Andreescu, An Introduction to Diophantine Equations, A Problem - Based Approach (2010).
  8. [8] J. Kannan, M. Somanath, K. Raja, Solutions of negative Pell equation involving twin prime, JP Journal of Algebra, Number Theory and Applications, 40, No 5 (2018), 869-874.
  9. [9] M. Somanath, J. Kannan, K. Raja, Lattice points of an infinite cone x2 + y2 = ( 2n+ 2n)z2, International J. of Mathematics Trends and Technology (IJMTT), 38, No 2 (2016), 95-98.
  10. [10] M. Somanath, J. Kannan, K. Raja, Exponential Diophantine equation in two and three variables, Global J. of Pure and Applied Mathematics, 13, No 5 (2017), 128-132.
  11. [11] M. Somanath, J. Kannan, On the positive integer solutions for a Diophantine equation, J. of Mathematics and Informatics, 10 (2017), 173-177.
  12. [12] M. Somanath, J. Kannan, Congruum problem, Intern. J. of Pure and Applied Math. Sciences, 9, No 2 (2016), 123-131.