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Abstract: Let µ ≥ 2 be a natural number. In this paper, we find all the
solutions of the Hyperbolic Diophantine equations D : x2 − (µ2 − µ)y2 − (4µ+
2)x + (6µ2 − 6µ)y − (5µ − 13)µ = 0 over Z. We also derive some recurrence
relations on the integer solutions (xn, yn) of D.
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1. Introduction

A Diophantine equation is a polynomial equation P (x1, · · · , xn) = 0, where
the polynomial P has integral coefficients and one is interested in solutions
for which all the unknowns take integer values. Diophantine equations are
rich in variety. Two-variable Diophantine equation have been a subject of
great interest, [4, 5]. Their theory constitutes one of the most beautiful, most
elaborate part of mathematics, which nevertheless still keeps some of its secrets
for the next generation of researchers.
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In this paper, we investigate positive integral solutions of the Diophantine
equation x2 − (µ2 − µ)y2 − (4µ + 2)x+ (6µ2 − 6µ)y − (5µ− 13)µ = 0 which is
transformed into a Pell’s equation and is solved by various methods.

2. Preliminaries

The Diophantine quadratic equation

ax2 + bxy + cy2 + dx+ ey + f = 0 (1)

with integral coefficient a, b, c, d, e, f reduces in its main case to a Pell type equa-
tion. We will sketch the general method of reduction. Equation (1) represents a
conic in the Cartesian plane, so solving (1) in integers means finding all lattice
points situated on this conic. We will solve equation (1) as △= b2 − 4ac. When
△< 0, then conic defined by (1) is an ellipse, and in this case the give equation
has only a finite number of solutions. When △= 0, the conic given by (1) is a
parabola. If 2ac−bd = 0, then equation (1) becomes (2ax+by+d)2 = d2−4qf,
which is not difficult to solve. In the case 2ae− bd 6= 0, by performing the sub-
stitutions X = 2ax + by + d and Y = (4ac − 2bd)y + 4af − d2, equation (1)
reduces to X2 + Y = 0, which is easy to solve. The most interesting case is
△> 0, when the conic defined by (1) is a hyperbola, [7]. Using a sequence of
substitutions, equation (1) reduces to the general Pell-type equation

X2 −DY 2 = N. (2)

3. The Diophantine Equation

x2 − (µ2 − µ)y2 − (4µ + 2)x+ (6µ2 − 6µ)y − (5µ − 13)µ = 0

In [1, 2, 3], we consider some specific Pell (also Diophantine) equations and
their integer solutions. In this present paper, we consider the integer solutions
of Diophantine equation

D : x2 − (µ2 − µ)y2 − (4µ + 2)x+ (6µ2 − 6µ)y − (5µ − 13)µ = 0 (3)

over Z, where µ ≥ 2 is an integer. It is not easy to solve and find the nature
and properties of the solutions of (3). So we apply a linear transformation T

to (3) to transfer to a simpler form for which we can determine the integral
solutions.
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Let

T :=

{

x = u+ h

y = v + k
(4)

be the transformation where h, k ∈ Z. Applying T to D, we get
{

T (D) = D̃ : (u+ h)2 − (µ2 − µ)(v + k)2 − (4µ + 2)(u + h)

+(6µ2 − 6µ)(v + k)− (5µ − 13)µ = 0
(5)

equating the coefficients of u and v to zero, we get h = 2µ+1 and k = 3. Hence
for x = u+ 2µ + 1 and y = v + 3, we have the Diophantine equation

D̃ : u2 − (µ2 − µ)v2 = 1 (6)

which is Pell equation. Now we try to find all integer solutions (un, vn) of D̃
and then we can re transfer all results from D̃ to D by using the inverse of T.

Theorem 1. Let D̃ be the Diophantine equation in (6). Then

1. The continued fraction expansion of
√

µ2 − µ is

√

µ2 − µ =

{

[1; 2̄], if µ = 2

[µ − 1; 2, 2µ − 2], if µ > 2

2. The fundamental solution of D̃ is (u1, v1) = (2µ− 1, 2).

3. Define the sequence {(un, vn)}, where
(

un
vn

)

=

(
2µ − 1 2µ2 − 2µ

2 2µ − 1

)n (
1
0

)

(7)

for n ≥ 1. Then (un, vn) is a solution of D̃.

4. The solutions (un, vn) satisfy un = (2µ − 1)un−1 + (2µ2 − 2µ)vn−1 and
vn = 2un−1 + (2µ − 1)vn−1 for n ≥ 2.

5. The solutions (un, vn) satisfy the recurrence relations
un = (4µ − 3)(un−1 + un−2)− un−3 and
vn = (4µ− 3)(vn−1 + vn−2)− vn−3 for n ≥ 4.

6. The n− th solution (un, vn) can be given by

un

vn
= [µ− 1; 2, 2µ − 2, · · · , 2, 2µ − 2

︸ ︷︷ ︸
, 2], (8)

for n ≥ 1.
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We saw as above that the Diophantine equation D could be transformed
into the Diophantine equation D̃ via the transformation T. Also we showed that
x = u+ 2µ+ 1 and y = v + 3. so we can re transfer all results from D̃ to D by
using the inverse of T. Thus we can give the following main theorem.

4. Main Results

Theorem 2. 1. The fundamental (minimal) solution of D is (x1, y1) =
(4µ, 5).

2. Define the sequence {(xn, yn)}n≥1 = {(un+2µ+1, vn+3)}, where (un, vn)
is defined in (7). Then (xn, yn) is a solution of D. So it has infinitely many
integer solutions (xn, yn) ∈ Z× Z.

3. The solutions (xn, yn) satisfy, for n ≥ 2

xn = (2µ − 1)xn−1 + (2µ2 − 2µ)yn−1 − 10µ2 + 8µ+ 2.

yn = 2xn−1 + (2µ − 1)yn−1 − 10µ + 4.

4. The solutions (xn, yn) satisfy the recurrence relations,
for n ≥ 4,

xn = (4µ − 3)(xn−1 + xn−2)− xn−3 − 16µ2 + 8µ + 8,

yn = (4µ − 3)(yn−1 + yn−2)− yn−3 − 24µ + 24.

Proof. 1. It is easily seen that (x1, y1) = (4µ, 5) is the fundamental so-
lution of D since (4µ)2 − (µ2 − µ)(5)2 − (4µ + 2)(4µ) + (6µ2 − 6µ)(5) −
(5µ − 13)µ = 0.

2. We prove it by Mathematical induction. Let n = 1.
Then (x1, y1) = (u1 + 2µ + 1, v1 + 3) = (4µ, 5) which is the fundamental
solution and so is solution of D. Let us assume that the Diophantine
equation in (1) is satisfied for n− 1, that is x2n−1 − (µ2 − µ)y2n−1 − (4µ+
2)xn−1 + (6µ2 − 6µ)yn−1 − (5µ − 13)µ = 0. We want to show that this
equation in (1) is satisfied for n.

x2 − (µ2 − µ)y2−(4µ + 2)x+ (6µ2 − 6µ)y − (5µ − 13)µ

= (un + 2µ+ 1)2 − (µ2 − µ)(vn + 3)2

− (4µ + 2)(un + 2µ+ 1)
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+ (6µ2 − 6µ)(vn + 3)− 5(µ − 13)µ

= u2n − (µ2 − µ)v2n − 1

= 0 (un, vn solution of D̃).

So, (xn, zn) = (un + 2µ+ 1, vn + 5).

3. From (12), un = (2µ− 1)un−1 + (2µ2 − 2µ)vn−1.

Adding 2µ+ 1 on both sides,
(un + 2µ+ 1) = (2µ − 1)un−1 + (2µ2 − 2µ)vn−1 + 2µ+ 1
we know that xn = un + 2µ+ 1 and yn = vn + 3.
Therefore, un = xn − (2µ + 1) and vn = yn − 3,

(un + 2µ + 1) = (2µ − 1)un−1 + (2µ2 − 2µ)vn−1 + 2µ+ 1

xn = (2µ − 1)(xn−1 − (2µ + 1))

+ (2µ2 − 2µ)(yn−1 − 3) + 2µ+ 1,

and we get,

xn = (2µ − 1)xn−1 + (2µ2 − 2µ)yn−1 − 10µ2 + 8µ+ 2. (9)

Similarly,
yn = 2xn−1 + (2µ − 1)yn−1 − 10µ + 4. (10)

4. We prove that xn satisfy the recurrence relation. For n = 4, we get
x1 = 4µ, x2 = 8µ2−6µ+2, x3 = 32µ3−48µ2+20µ, x4 = 128µ4−256µ3+
160µ2 − 30µ + 2. Hence

x4 = (4µ− 3)(x3 + x2)− x1 − 16µ2 + 8µ+ 8

= 128µ4 − 256µ3 + 160µ2 − 30µ + 2.

So x4 = (4µ − 3)(x3 + x2)− x1 − 16µ2 + 8µ + 8 is satisfied for n = 4.

Let us assume that this relation is satisfied of n− 1, that is

xn−1 = (4µ − 3)(xn−2 + xn−3)− xn−4 − 16µ2 + 8µ + 8. (11)

Then applying the previous assertion, (9) and (11), we conclude that
xn = (4µ − 3)(xn−1 + xn−2)− xn−3 − 16µ2 + 8µ + 8, for n ≥ 4.
Similarly, we prove that yn satisfies the recurrence relation. For n = 4, we
get y1 = 5, y2 = 8µ−1, y3 = 32µ2−32µ+9, y4 = 128µ3−192µ2+80µ2−5.
Hence

y4 = (4µ− 3)(y3 + y2)− y1 − 24µ + 24
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= 128µ3 − 192µ2 + 80µ − 5.

So y4 = (4µ − 3)(y3 + y2) − y1 − 24µ + 24 is satisfied for n = 4. Let us
assume that this relation is satisfied for n− 1, that is

yn−1 = (4µ − 3)(yn−2 + yn−3)− yn−4 − 24µ + 24µ. (12)

Then applying the previous assertion, (10) and (12), we conclude that
yn = (4µ − 3)(yn−1 + yn−2)− yn−3 − 24µ + 24, for n ≥ 4.

5. Conclusion

Diophantine equations are rich in variety. There is no universal method for find-
ing all possible solutions (if it exists) for Diophantine equations. The method
looks to be simple but it is very difficult for reaching the solutions.
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