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Abstract: Let © > 2 be a natural number. In this paper, we find all the
solutions of the Hyperbolic Diophantine equations D : 2 — (u? — p)y? — (4p +
2)x + (62 — 6p)y — (5 — 13)u = 0 over Z. We also derive some recurrence
relations on the integer solutions (x,,,yy) of D.
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1. Introduction

A Diophantine equation is a polynomial equation P(zy,--- ,z,) = 0, where
the polynomial P has integral coefficients and one is interested in solutions
for which all the unknowns take integer values. Diophantine equations are
rich in variety. Two-variable Diophantine equation have been a subject of
great interest, [4, 5]. Their theory constitutes one of the most beautiful, most
elaborate part of mathematics, which nevertheless still keeps some of its secrets
for the next generation of researchers.
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In this paper, we investigate positive integral solutions of the Diophantine
equation 22 — (u? — p)y? — (4p + 2)x + (6p? — 61)y — (5p — 13)p = 0 which is
transformed into a Pell’s equation and is solved by various methods.

2. Preliminaries

The Diophantine quadratic equation
az? +bry + ey’ +dr+ey+ f =0 (1)

with integral coefficient a, b, ¢, d, e, f reduces in its main case to a Pell type equa-
tion. We will sketch the general method of reduction. Equation (1) represents a
conic in the Cartesian plane, so solving (1) in integers means finding all lattice
points situated on this conic. We will solve equation (1) as A= b* — 4ac. When
A< 0, then conic defined by (1) is an ellipse, and in this case the give equation
has only a finite number of solutions. When A= 0, the conic given by (1) is a
parabola. If 2ac—bd = 0, then equation (1) becomes (2ax +by+d)? = d2—4qf,
which is not difficult to solve. In the case 2ae — bd # 0, by performing the sub-
stitutions X = 2ar + by + d and Y = (4dac — 2bd)y + 4af — d?, equation (1)
reduces to X2 +Y = 0, which is easy to solve. The most interesting case is
A> 0, when the conic defined by (1) is a hyperbola, [7]. Using a sequence of
substitutions, equation (1) reduces to the general Pell-type equation

X? - DY?=N. 2)

3. The Diophantine Equation
a? — (1 — p)y® — (dp + 2)x + (64> — 6p)y — (50 — 13)u =0

In [1, 2, 3], we consider some specific Pell (also Diophantine) equations and
their integer solutions. In this present paper, we consider the integer solutions
of Diophantine equation

D:a? — (u0* = )y — (dp+2)z + (64° — 6p)y — (Gu—13)u =0 (3)

over Z, where p > 2 is an integer. It is not easy to solve and find the nature
and properties of the solutions of (3). So we apply a linear transformation 7'
to (3) to transfer to a simpler form for which we can determine the integral
solutions.
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Let

T::{m:u—l—h (@)
y=v+k

be the transformation where h, k € Z. Applying T to D, we get
T(D)=D: (u+h)?—(u?—p)(v+k)?—“4p+2)(u+h) 5)
+(6p% — 6p)(v + k) — (5 = 13)p =0

equating the coefficients of u and v to zero, we get h = 2+ 1 and k£ = 3. Hence
forx =u+2p+ 1 and y = v + 3, we have the Diophantine equation

D:u? = (p? = pp? =1 (6)
which is Pell equation. Now we try to find all integer solutions (un,vy) of D
and then we can re transfer all results from D to D by using the inverse of 7.
Theorem 1. Let D be the Diophantine equation in (6). Then
1. The continued fraction expansion of \/u? — p is

N/ . {[1;2]7 if p=2

[ —1;2,2p = 2], if p>2

2. The fundamental solution of D is (u1,v1) = (2u — 1,2).

3. Define the sequence {(uy,vy,)}, where

un \ [ 2p—1 2w —2u\" [ 1 )
v ) 2 2u —1 0
for n > 1. Then (uy, vy) is a solution of D.

4. The solutions (uy,vy,) satisfy u, = (2 — Dun_1 + (2% — 2u)v,_1 and
Up = 2Up—1 + (2 — 1)v,—q forn > 2.

5. The solutions (uy,vy,) satisfy the recurrence relations
Up = (4p — 3)(Un—1 + Up—2) — up—3 and
Up = (4 — 3)(Vp—1 + vp—2) — vy—3 for n > 4.
6. The n — th solution (uy,vy,) can be given by
Up

U,

forn > 1.
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We saw as above that the Diophantine equation D could be transformed
into the Diophantine equation D via the transformation T’ Also we showed that
r=u+2u+1and y = v+ 3. so we can re transfer all results from D to D by
using the inverse of T. Thus we can give the following main theorem.

4. Main Results

Theorem 2. 1. The fundamental (minimal) solution of D is (z1,y1) =
(441, 5).

2. Define the sequence {(xy, yn)}n>1 = {(un+2u+1,v,+3)}, where (uy,, vy,)
is defined in (7). Then (z,yy,) is a solution of D. So it has infinitely many
integer solutions (zp,Yyn) € Z X Z.

3. The solutions (xy,y,) satisty, for n > 2

T = (2p = Va1 + (207 = 2)yn—1 — 1047 + 8 + 2.
Yn = 2Tp—1+ (200 — Dyn—1 — 10p + 4.

4. The solutions (xy,y,) satisfy the recurrence relations,
forn >4,

Ty = (44 — 3)(Tp1 + Tn—2) — Tn_3 — 160 + 8u + 8,
Yn = (4t — 3)(Yn—1 + Yn—2) — Yn—3 — 24/ + 24.

Proof. 1. Tt is easily seen that (z1,y1) = (4u,5) is the fundamental so-
lution of D since (4u)? — (1 — p)(5)? — (4p + 2)(4p) + (6p> — 6p)(5) —
(5 —13)p = 0.

2. We prove it by Mathematical induction. Let n = 1.
Then (x1,y1) = (u1 + 2+ 1,01 + 3) = (4p,5) which is the fundamental
solution and so is solution of D. Let us assume that the Diophantine
equation in (1) is satisfied for n — 1, that is 22_; — (p? — p)y2_; — (4p +
2)zy—1 + (6% — 6p)yn—1 — (5 — 13)p = 0. We want to show that this
equation in (1) is satisfied for n.

w? — (= )y —(4p + 2)z + (6p° — 6p)y — (5 — 13)p
= (un +2p+1)* = (1 — p)(vn + 3)?
(4 2) i+ 20+ 1)
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+ (6p% — 6p) (vn +3) — 5(u — 13)
o= (W = pop —1

=u
=0 (up,v, solution of D)
So, (Tn, 2n) = (up +2u + 1, v, +5).

3. From (12), up = (2p — Dup—1 + (2% — 20)v, 1.

Adding 21 + 1 on both sides,

(n + 20+ 1) = (2 — Vup—1 + (2u% — 2u)vp—1 + 2u + 1

we know that x, = u, +2u+ 1 and y,, = v, + 3.

Therefore, u, = z, — (2u + 1) and v, = y,, — 3,

(un +2p + 1) (20 = Dun—1 + (24 = 2p)vp1 +2u + 1
= (2~ (a1 — 2+ 1)
+ (267 = 20) (Yn—1 — 3) + 20+ 1,

and we get,
= (2 — Dap_1 + (20% = 2)yn_1 — 101> + 8p + 2. (9)

Similarly,
Yn = 2Tp—1 + (200 — 1)yp—1 — 10p + 4. (10)

4. We prove that z, satisfy the recurrence relation. For n = 4, we get
1 =4, w0 = 8% — 6p+2, w3 = 3213 — 48u% 4+ 20, x4 = 128 — 2563 +
16012 — 30 + 2. Hence

Ty = (4u — 3)(1‘3 —|-l‘2) — T — 16/12 + 8,u +8
= 128u* — 2563 + 160> — 30p + 2.

So x4 = (4 — 3)(x3 + m2) — w1 — 16> + 8 + 8 is satisfied for n = 4.
Let us assume that this relation is satisfied of n — 1, that is
Tr1 = (4p — 3)(Tpo + Tp3) — Tp_g — 160> +8u+8.  (11)

Then applying the previous assertion, (9) and (11), we conclude that

Tp = (4p —3)(xp_1 +2p o) — T3 — 160> + 8 + 8, for n > 4.
Similarly, we prove that y, satisfies the recurrence relation. For n = 4, we
get y1 = 5, yo = 8u—1, y3 = 32u> —32u+9, vy = 1283 —192,> +80pu% —
Hence

ys = (4p—3)(ys + y2) —y1 —24p + 24
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=128 — 19242 4 80 — 5.

So ys = (4p — 3)(ys + y2) — y1 — 24p + 24 is satisfied for n = 4. Let us
assume that this relation is satisfied for n — 1, that is

Yn—1 = (44t — 3)(Yn—2 + Yn—3) — Yn—a — 24p1 + 24p1. (12)

Then applying the previous assertion, (10) and (12), we conclude that
Yn = (4p = 3)(Yn—1 + Yn—2) = Yn—3 — 24 + 24, for n > 4.
]

5. Conclusion

Diophantine equations are rich in variety. There is no universal method for find-
ing all possible solutions (if it exists) for Diophantine equations. The method
looks to be simple but it is very difficult for reaching the solutions.
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