In this work, an algorithmic procedure is given to implement the solution of a two-point boundary value problem for a nonlinear two-time-scale discrete-time system.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] A. Golev, S. Hristova, S. Nenov, Monotone-iterative method for solving
antiperiodic nonlinear boundary value problems for generalized delay difference
equations with maxima, Abstr. Appl. Anal., 2013 (2013), Article
ID 571954.
246 T. Zerizer
[2] S.G. Krantz, H.R. Parks, The Implicit Function Theorem, History, Theory,
and Applications, Birkh¨auser, Basel (2003).
[3] G.A. Kurina, M.G. Dmitriev, D.S. Naidu, Discrete singularly perturbed
control problems (A Survey), Dyn. Contin. Discrete Impuls. Syst. Ser. B
Appl. Algorithms., 24 (2017), 335-370.
[4] A.N. Kvitko, A method for solving boundary value problems for nonlinear
control systems in the class of discrete controls, Differentsialnye Uravneniya, 44, No 11 (2008), 1499-1509.
[5] A.N. Kvitko, O.S. Firyulina, A.S. Eremin, Solving boundary value problem
for a nonlinear stationary controllable system with synthesizing control,
Math. Probl. Eng., 2017 (2017), Article ID 8529760.
[6] T.H.S. Li, J.S. Chiou, and F.C. Kung, Stability bounds of singularly perturbed
discrete systems, IEEE Trans. Autom. Control, 44, No 10 (1999),
1934-1938.
[7] R.L. Mishkov, Generalization of the formula of Faa Di Bruno for a composite
function with a vector argument, Int. J. Math. Math. Sci., 24 (2000),
481-491.
[8] P.Y.H. Pang, R.P. Agarwal, Monotone iterative methods for a general class
of discrete boundary value problems, Computers Math. Applic., 28 (1994),
243-254.
[9] K.S. Park, J.T. Lim, Analysis of nonstandard nonlinear singularly perturbed
discrete systems, IEEE Trans Circuits Syst-II: Express Briefs, 58,
No 5 (2011).
[10] T. Sari, T. Zerizer, Perturbations for linear difference equations, J. Math.
Anal. Appl., 1 (2005), 43-52.
[11] T. Zerizer, Perturbation method for linear difference equations with small
parameters, Adv. Differ. Equ., 11 (2006), 1-12, Article ID 19214.
[12] T. Zerizer, Perturbation method for a class of singularly perturbed systems,
Adv. Dyn. Syst. Appl., 9, No 2 (2014), 239-248.
[13] T. Zerizer, Problems for a linear two-time-scale discrete model, Adv. Dyn.
Syst. Appl., 10, No 1 (2015), 85-96.
BOUNDARY VALUE PROBLEM FOR A TWO-TIME-SCALE... 247
[14] T. Zerizer, Boundary value problems for linear singularly perturbed discrete
systems, Adv. Dyn. Syst. Appl., 10, No 2 (2015), 215-224.
[15] T. Zerizer, Boundary value problem for a three-time-scale singularly perturbed
discrete system, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math.
Anal., 23 (2016), 263-272.
[16] T. Zerizer, On a class of perturbed discrete nonlinear systems, GJPAM,
14, No 10 (2018), 1407-1418.
[17] T. Zerizer, A class of nonlinear perturbed difference equations, Int. J.
Math. Anal., 12, No 5 (2018), 235-243.
[18] T. Zerizer, A class of multi-scales nonlinear difference equations, Appl.
Math. Sci., 12, No 19 (2018), 911-919.
[19] T. Zerizer, Nonlinear perturbed difference equations, J. Nonlinear Sci.
Appl., 11 (2018), 1355-1362.
248