REYNOLDS' LIMIT FORMULA FOR DORODNITZYN'S
ATMOSPHERIC BOUNDARY LAYER MODEL
IN CONVECTIVE CONDITIONS

Abstract

Atmospheric convection is an essential aspect of atmospheric movement, and it is a source of errors in Climate Models. Being able to generate approximate limit formulas and compare the estimations they produce, could give a way to reduce them. In this article, it is shown that it is enough to assume that the velocity's $L^2$-norm is bounded, has locally integrable, $L^1_{loc}$, weak partial derivatives up to order two, and a negligible variation of its first velocity's coordinate in direction parallel to the surface, to obtain a Reynolds' limit formula for a Dorodnitzyn's compressible gaseous Boundary Layer in atmospheric conditions.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 4
Year: 2018

DOI: 10.12732/ijam.v31i4.12

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] G. Bayada, M. Chambat, The transition between the Stokes equations and the Reynolds equation: A mathematical proof, Appl. Math. and Optim. 14, No 1 (1986), 73-93.
  2. [2] H. Blasius, The boundary layers in fluids with little friction, NACA-TM, 1256 (1950).
  3. [3] F. Boyer, P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer-Verlag, New York (2013).
  4. [4] A. Bouzinaoui, R. Devienne, J.R. Fontaine, An experimental study of the thermal plume developed above a finite cylindrical heat source to validate the point source model, Experimental Thermal and Fluid Science, 31 No 7 (2007), 649-659.
  5. [5] A. Bressan, Lecture Notes on Functional Analysis: With Applications to Linear Partial Differential Equations, AMS, Graduate Studies in Mathematics (2013). 694 C.V. Valencia-Negrete, C. Gay-Garc´ıa, A.A. Carsteanu
  6. [6] A. Busemann, Gasstr¨omung mit laminarer Grenzschicht entlang einer Platte, ZAMM, 15 No 1-2 (1935).
  7. [7] L. Crocco, Transmission of heat from a flat plate to a fluid flowing at high velocity, NACA, No 690 (1932).
  8. [8] L. Chupin, R. Sart, Compressible flows: New existence results and justification of the Reynolds asymptotic in thin films, Asymptot. Anal., 76 No 3/4 (2012), 193-231.
  9. [9] A.A. Dorodnitzyn, Laminar boundary layer in compressible fluid, C. R. Acad. Sci. de l’URSS (Doklady), XXXIV, No 8 (1942), 213-219.
  10. [10] R.G. Fleagle, J.A. Businger, An Introduction to Atmospheric Physics, Academic Press, New York (1980).
  11. [11] K. Gersten, Hermann Schlichting and the Boundary-Layer Theory, In: Hermann Schlichling - 100 years, Springer (2009).
  12. [12] S. Goldstein, Low-drag and suction airfoils, J. Aeronaut. Sci., 15, No 4 (1948), 189-214.
  13. [13] A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge (2012).
  14. [14] G.M. Martin et al., The HadGEM2 family of Met Office Unified Model climate configurations, Geoscientific Model Development, 4, No 3 (2011), 723-757.
  15. [15] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Volume 1: Incom- pressible Models, Oxford Lecture Ser. in Math. and its Appl., Clarendon Press, Oxford (1998).
  16. [16] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Volume 2: Com- pressible Models, Oxford Lecture Ser. in Math. and its Appl., Clarendon Press, Oxford (1998).
  17. [17] E. Maruˇsi´c-Paloka, M. Starˇcevi´c, Derivation of Reynolds equation for gas lubrication via asymptotic analysis of the compressible Navier–Stokes system, Nonlinear Anal.: Real World Applications, 11, No 6 (2010), 4565- 4571. REYNOLDS’ LIMIT FORMULA FOR DORODNITZYN’S... 695
  18. [18] E. Maruˇsi´c-Paloka, M. Starˇcevi´c, Rigorous justification of the Reynolds equations for gas lubrication, C. R. M´ecanique, 333, No 7 (2005), 534- 541.
  19. [19] B.R. Morton, G. Taylor, J.S. Turner, Turbulent gravitational convection from maintained and instantaneous sources, Proc. Roy. Soc. London Ser. A, 234 No 1196 (1956).
  20. [20] O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp Tower’s Experiments, including an experimental determination of the viscosity of olive oil, Philos. Trans. Roy. Soc. London Ser. A, 177 (1886), 157-234.
  21. [21] K. Saha, The Earth’s Atmosphere. Its Physics and Dynamics, Springer, Berlin (2008).
  22. [22] H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1955).
  23. [23] H. Schlichting, K. Gersten, Boundary Layer Theory with contributions from Egon Krause and Herbert Oertel Jr., Springer-Verlag (2017).
  24. [24] A.J. Smits, J.-P. Dussauge, Turbulent Shear Layers in Supersonic Flow, Springer-Verlag (2006).
  25. [25] K. St¨uwe, Geodynamics of the Lithosphere. An Introduction, Second Ed., Springer (2007).
  26. [26] T. von K´arm´an, H.S. Tsien, Boundary layer in compressible fluids, J. Aero- naut. Sci., 5, No 6 (1938), 227-232.
  27. [27] C.V. Valencia, Ecuaciones de Navier-Stokes y Euler en R2 y R3, Tesis para obtener el grado de Maestro en Ciencias Fisicomatem´aticas, Instituto Polit´ecnico Nacional, M´exico (2014).
  28. [28] O.G. Tietjens, Fundamentals of Hydro- and Aerodynamics. Based on Lec- tures by L. Prandtl, Ph. D., Dover Publications Inc., New York (1934).