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Abstract: Atmospheric convection is an essential aspect of atmospheric move-
ment, and it is a source of errors in Climate Models. Being able to generate
approximate limit formulas and compare the estimations they produce, could
give a way to reduce them. In this article, it is shown that it is enough to assume
that the velocity’s L?-norm is bounded, has locally integrable, Llloc, weak par-
tial derivatives up to order two, and a negligible variation of its first velocity’s
coordinate in direction parallel to the surface, to obtain a Reynolds’ limit for-
mula for a Dorodnitzyn’s compressible gaseous Boundary Layer in atmospheric
conditions.
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1. Introduction

A suitable approximate model for the air near the Earth’s surface could tie
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both the free-stream velocity and the no slip condition. In Theorem 19, it will
be shown that there is a Reynolds’ limit formula:

f 0%u ~ Of Ou
> 9y Oy’
for a Dorodnitzyn’s compressible Boundary Layer, where u is the first velocity’s
component, f = [1 - (u2 / 22‘0)]76/ 25, y denotes the height, and iy is constant.
In order to do so, we find an estimate, independent of the domain’s scale:

CQU3
<
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for the L?-norm of a corresponding incompressible vector field F¢, where U is
the air’s velocity over the Boundary Layer, and C' is a constant set out by the
rest of the boundary conditions given to the initial problem.

The solution procedure consists of three main steps. First, the application
of Bayada and Chambat’s change of variables transforms the original problem
to an adimensional model where the effect of the small parameter of proportion,

e = max{h(z) | z €0, L]} /L,

on each term, is explicit. Then, an adaptation of Dodordnitzyn’s technique is
applied to present it in an incompressible form, where Majda’s Energy Method
is used to obtain a bound that is independent of € for the L?-norm of the incom-
pressible gradient. Finally, we show that the family of solutions to the adimen-
sional problem, indexed by the small parameter ¢ is contained in a bounded set
of a Sobolev space. Consequently, the Rellich-Kondrachov Compactness The-
orem implies that the sequence of solutions has a subsequence that converges
uniformly in the space L? () when the parameter € tends to zero.

1.1. Motivation

There is a need to lower biases in continental warmth to obtain better atmo-
sphere models G.M. Martin et al. [14, p. 725]. The release of energy to the
atmosphere by convective parcels contributes to these errors. Its calculation
has historically been a way to reduce inaccuracies in surface temperature de-
scriptions K. Stitwe [25, p. 59]. A temperature difference between a specific
surface in contact with a gas and its surrounding neighborhood is the origin of a
vertical draft of air, a natural convection air parcel. A sudden expansion of the
gas in touch with the increased temperature gives a drop in its density, which
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in turn makes it lighter B.R. Morton et al. [19] and A. Bouzinaoui et al. [4].
However, ascending air acceleration is modeled by compressible Navier-Stokes
equations P.-L. Lions [15] and F. Boyer et al. [3]. The suggestion of this work
is to overcome this difficulty by looking for Reynolds’ limit formulas, deduced
from compressible Boundary Layer models. In this article, a first Reynolds’
limit formula is found for the Dorodnitzyn’s ideal gas and constant total energy
Boundary Layer model, which admits an incompressible adimensional presen-
tation where the evolution parameter problem is stated and the convective non
linear term estimated through its free-stream velocity value.

1.2. Statement of the Problem

An atmospheric gas is a newtonian fluid, which implies the use of compressible
Navier-Stokes equations P.-L. Lions [15]. If, instead of considering a Bound-
ary Layer, a two-dimensional incompressible Navier-Stokes model is applied to
study the behaviour of a liquid in contact with a solid surface, then there exist
a smooth solution for each given viscosity value. For a fixed initial condition,
a set of viscosity values has a corresponding family of well defined classical so-
lutions. When the viscosity tends to zero, this family of solutions converges to
an Euler’s Equations solution with the same initial condition A.J. Majda et al.
[13].

However, even in the simplest case of an incompressible flow whose vorticity
is zero everywhere on its domain, an Euler’s solution satisfying the condition
of null velocity at I'g, has a null velocity throughout the whole domain C.V.
Valencia [27, p. 19]. Therefore, there are no two-dimensional Euler solutions
with zero vorticity that comply with both the positive horizontal component
of velocity at the top of the domain and the no slip condition at its bottom
H. Schlichting et al. [23, p. 145]. This motivates the statement of a Bound-
ary Layer model to more appropriately depict this phenomenon. Moreover,
numerical approximations of boundary layer solutions describe velocity profiles
similar to those found in reality H. Schlichting [22, p. 143].

In 1935, A. Busemann [6] proposed the first compressible Boundary Layer
model to represent the behaviour of a gas with upper outflow velocity smaller
than the velocity of sound, and Prandtl number equal to one. In his model,
pressure terms are discarded, but temperature, viscosity, and density vary in
accordance with ideal gas empirical properties to more accurately describe an
atmospheric boundary layer moving over a surface. He presents temperature as
a function of velocity, and employs it to describe the rest of the state variables
in terms of velocity as well.
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Busemann’s model considered a power-law between viscosity and temper-
ature whose exponent was later corrected in T. von Kéarman and H.S. Tsien
[26] article of 1938, where they developed a different method of solution for
the same problem. Less than a decade later, in 1942, A.A. Dorodnitsyn [9]
postulated a similar model, but allowed pressure to vary with x, which could
imply the Boundary Layer to be separated from the surface. In this work, he
defined several changes of variables. The first one of these allowed him to write
the compressible model as an incompressible system. Here, we adapt this coor-
dinates’ change to a similar but not rectangular adimensional domain that will
be obtained from €, and defined in Theorem 15.

Limit formulas for a small parameter of proportion have their origin in O.
Reynolds’ [20] article “On the Theory of Lubrication and Its Application to Mr.
Beauchamp Tower’s Experiments, Including an Experimental Determination of
the Viscosity of Olive Oil”, published in 1886. Reynolds’ Formula was exten-
sively used without a formal proof that it was indeed Navier-Stokes Equations’
limit when the small parameter of proportion between the domain’s height and
its length tends to zero. This was accomplished a hundred years later by G.
Bayada and M. Chambat [1] for Stokes’ Equations.

In 2009, L. Chupin and R. Sart [8] successfully showed, through an ap-
plication of Didier Bresch and Benoit Desjardin’s Entropy Methods, that the
compressible Reynolds equation is an approximation of compressible Navier-
Stokes equations. For a thin domain filled with gas, the authors mention that
there appears to be only one result of this type of problem. This is due to E.
Marusic-Paloka and M. Starcevic [17], [18]. Marusic-Paloka and Starcevic show
the convergence of a two-dimensional compressible Stokes Equations.

In the literature, it does not seem to exist a small parameter asymptotic
analysis for a compressible gaseous Boundary Layer model with a convective non
linear term, such as Dorodnitzyn’s Model, nor an adaptation of Dorodnitzyn’s
change of variables to this particular domain’s shape to find a limit formula for
a compressible case in terms of an incompressible expression. The main result
of this study is stated in Theorem 18 and proved in Subsection 2.3. Meanwhile,
it can be expressed by the following assertion: Dorodnitzyn’s Model may be
approximated by a limit formula.

1.3. The Domain

Laminarity — and therefore two-dimensionality of the domain — in the liquid’s
movement when it is in contact with a solid surface is a supposition based on
experimental observations T. von Kdrmén et al. [26] and S. Goldstein [12],
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Figure 1: The Domain €,

and it is still regarded as a good assumption to describe it at an initial stage
of a Boundary Layers’ motion K. Gersten [11, p. 11] and S. Goldstein [12].
Here, the Boundary Layer is represented as a two-dimensional slice where the
convective bubble is beginning to form although it has not yet separated from
the surface, and it is slightly different from the rectangle that constitutes the
domain in Dorodnitzyn’s model.

Definition 1. Let h: [0,L] — (0,00) be a smooth function such that
h(0) = h(L) = 6. The curve h is assumed to be twice differentiable in the inter-
val (0, L) with well defined continuous extensions for itself and its derivatives
to {0} and {L}, i.e. h € C?([0, L];(0,00)), and to have only one critical point
which is a maximum. Moreover, suppose L > 0. Then, the domain is denoted
as:

Qn: ={(z,y) eR?* |0<2z< L &0<y<h(z)}.

The domain’s topological boundary, 0€2,, is drawn by the union of the
segments: I'p = {(z,0) €R?; 0 <z <L}, Ag = {(0,y) € R% 0 < y < 4§},
AL = {(L,y) ER?:0<y< (5}, and the curve

Iy ={(z,h(z)) ER*; 0<az < L}.
Remark 2. The vector —e; = (—1,0) € R? depicts the wind’s direction

above the Boundary Layer Q. Likewise, e3 = (0,1) € R? portrays the direction
from the Earth’s surface to its atmosphere. Similarly, the length L > 0 is a
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fixed real number which represents the distance covered by the free-stream in
direction —e; = (—1,0) over I';,. On the other hand, continuation of trajectories
in the Boundary Layer is broken if for some x € [0, L] there is a pressure drop
that generates a lift, a separation of the volume of the air from the surface. At
that moment, the phenomenon’s description in terms of a fixed domain is no
longer possible.

1.4. Dorodnitzyn’s Model Equations

Definition 3. Let Qp be as in Definition 1, p € L' (24;(0,00)) be the
density; the velocity, v = (u,v) € L? (Qh;]R2) N Llloc (Qh;R2); the absolute
temperature, T € L} (S2h;(0,00)); the pressure, p € L} . (2); the dynamic

viscosity, j € L. (Qp); and the thermal conductivity be € L}, (4); all
with well defined first order weak partial derivatives, locally integrable in the

Lebesgue sense, i.e. in L} (Qp).

Dorodnitzyn’s model is formed by seven equations given for the seven vari-
ables p, u, v, T, p, Kk, u, described above. The first three come from the con-
servation laws of Newtonian fluids: the stationary Conservation of Mass Law,
F. Boyer et al. [3], Eq. (1), the compressible Boundary Layer Conservation of
Momentum Law, A. Dorodnitzyn [9], Eq. (2), and the simplified Conservation
of Energy per Unit Mass Law, Eq. (9), that is obtained in Proposition 5 from
an application of L. Crocco’s [7] procedure to the stationary and approximated,
Conservation of Energy Law stated below as Eq. (3).

Consider:
9 (pu) 0 (pv) _ .
ox T oy 0; (1)
ou ou\  9dp 0 ou\
p(ua—x-i-va—y) = 8x+8y <,u8y>, and (2)
0 (c,T) | d(eT)] _ 0 T ou\?  op
p[“ or Vo | "oy fay) T \ey) Tae  ®

where ¢, is the specific heat transfer coefficient at constant pressure.
The next four are Ideal Gases properties and empirical laws. In general,
the dynamic viscosity p satisfies the proportionality relation
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for a thermal conductivity k and a Prandtl number Pr. In this case, assume
Pr =1. This is: .
1= 2H. (4)

’
K

and, the Equation of State K. Saha [21, p. 24],
pV = nR*T, (5)

where R* is the Universal Gas Constant, n is the number of moles in a volume
V,and V =V (B,) = [[[ dx where

B, ={x = (z,y,2) eR3; lx — x| <T}C]R3,

for a given point X € Qp NR3 and a value » > 0 such that Qp, C B,. This last
equation is also used by Dorodnitzyn in the form:
p
= £ 6
p 7T (6)
for R = R*/M, where M is the molecular weight of the gas.
The adiabatic polytropic atmosphere, O.G. Tietjens [28, p. 35], is a relation:

pVb = ¢ (7)

where b = 1.405, c¢ are fixed constants, and V' has the value described above.
Finally, given two values g and T of p and T at the same point (xg,yo) €
Qp,, there is a Power-Law, A.J. Smits et al. [24, p. 46]:

%
Mo (2) . (8)
Ho To
Remark 4. First of all, when the air flow moves over a plane surface, has
a velocity lower than the velocity of sound, and the surface has a homogeneous
temperature, the Prandtl number is equal to 1, H. Schlichting et al. [23, p.
215], Eq. (4), and ¢, i replaces k< in Eq. (3). Second, a gas in the range of
temperatures and densities found in the Earth’s atmosphere fulfills the premises
discovered for an Ideal Gas, P.-L. Lions [15, p. 8], such as the Equation of
State, Eq. (5). Moreover, when air moves in a convective parcel, the process
is fast enough to expect that there will not be a heat transfer between the gas
within the convective draft and its environment. Thus, adiabatic conditions
imply another association, known as an adiabatic polytropic atmosphere, O.G.
Tietjens [28, p. 35]. Additionally, in a temperature range of [150,500] Kelvin,
there is a Power-Law between dynamic viscosity and 7', A.J. Smits et al. [24,
p. 46].
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One can follow L. Crocco’s [7] procedure to find a Conservation of Energy
Law from which Dorodnitzyn’s model equation Eq. (9) is deduced, and find
that it is equivalent to Eq. (3) when the Prandtl number is equal to 1, Eq. (4),
as it is outlined in the following paragraph.

Proposition 5. Let p,u,v,T,p,k, u be as they were described in Defini-
tion 3. Then, they satisfy Eq. (3) if and only:

0 0 u? 0 0 u?

Proof. First, Eq. (4) allows to make the substitution x = ¢, p in the right
side or Eq. (3). This way one can arrive at:

o) 2L (85 o

0y

ot

Also, the product of the first velocity coordinate u and Eq. (2) gives:

0 [u? 0 [u? 0 ou dp
a3 em @) - mba) 5 o
Finally, Eq. (9) is obtained from the addition of Eq. (10) and (11) because
Op/ot = (9p/0x) (0x/0t) = u(Op/dx). O

Remark 6. It is possible to notice in Eq. (9) that in Dorodnitzyn’s model,
the kinetic energy generated by the velocity coordinate v in the orthogonal
direction to the surface is taken as negligible; the total energy per unit mass,
E =c, T+ u?/2, is considered the addition of the kinetic energy per unit mass
u?/2 and the internal energy in terms of specific enthalpy e = cpT.

1.5. Dorodnitzyn’s Model Boundary Conditions
The velocity at the upper top I'y, of €y, is called the free-stream velocity. Let:
V|Fh = (_U70)7 (12)

for a strictly positive constant real value U > 0. Also, the velocity value at the
lower lid I'j is:

VFO = (0,0) (13)
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Similarly, a constant free-stream temperature,
Tlr, = Tn>0, (14)
and a homogeneous free-stream dynamic viscosity value

plo, = pn >0, (15)

are given in I'y,.

Furthermore, there are periodic velocity conditions at the vertical segments
of the boundary, Ag and Ay, described in the Definition 1. This is: For all
y € (0,0),

(u(0,9),0) = (u(L,y),0). (16)
Finally, we have a Neumann condition for 7: For all = € [0, L],

oT
8—y(:1:, 0) = 0. (17)

Remark 7. This last condition represents an adiabatic wall in the surface
I'p. If the wind’s velocity is less than the velocity of sound, the gas adheres
to the solid surface, T. von Kédrmén et al. [26] and A.J. Smits et al. [24, p.
52]. This is called the no slip condition, as seen in Eq. (13). On the other
hand, there is a logarithmic wind velocity profile on the Earth’s troposphere
that depends on the type of atmosphere, and is not valid close to the Earth’s
surface, but provides a boundary condition U at the upper top I'j, of Q. For
example, the classical Fleagle and Businger’s [10, p. 274] Atmospheric Physics
book reports a horizontal velocity measurement of 4 m/s at a height of 0.4 m,
v(0,0.4) = (4,0), in an unstable atmosphere at O’Neill, Nebraska on 19 August
1953. Moreover, this value and the free-stream temperature determine that of
the surface temperature, as will be shown in the following Lemma 8, Eq. (19).
Similarly, the pressure p|r, = po can be known from U and T}, through Eq. (5)
and (19). Once the density is expressed in terms of the velocity u, as in Lemma
11, p|lr, = po can be calculated. Finally, Eq. (4) provides a way to obtain uy,
from a surface value of kj given by the material.
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2. Limit Formula
2.1. Adimensional Model

Lemma 8. Let p,u,v,T,p,k, 1 be as in Definition 3. If the no slip condi-
tion (13) is satisfied, then Eq. (9) has a constant solution E = ¢, Ty, + U?/2 in
the domain 2y, described in Definition 1, that fulfills the remaining boundary
conditions (12), (14), and (17) given for u, v, and T.

Proof. 1t is enough to substitute the constant value E = ¢, T, + U?/2 in
Eq. (9) to see that both sides become zero. Because E = ¢, T + u?/2, this
allows us to express the absolute temperature in the form

T(u) =Ty + % (U? —u?). (18)

The boundary conditions (12) and (14) are verified by construction. If y = 0,
Eq. (18) and the no slip condition (13) imply that:

U2
T|r, =1 1——. 1
=7+ (1- ) (19)
Thus, T'|r, = To > 0, and the boundary condition (17) is fulfilled. O

Corollary 9. Under the same assumptions, where the free-stream tem-
perature Ty, > 0, as is stated in (14), T can be seen in terms of Ty as:

Tw) = Ty (1— 2(;’2%). (20)

Proof. The previous Lemma 8 shows that the total energy F has a constant
value throughout the domain. We can use the no slip condition (13) in the
expression B = ¢, T + u?/2 to obtain a new way to calculate it as F = cp To.
Hence, ¢, Ty = ¢, T + u%/2, and we get Eq. (20). O

Remark 10. By Definition 3, the absolute temperature 7' > 0 in the
domain €2, as described in Definition 1. Additionally ¢, > 0. In consequence,
the total energy per mass unit ig: = ¢,Tp = ¢, + u?/2 is strictly bigger than
the kinetic energy u?/2 generated by the first velocity’s component. Therefore
the difference 1 — (u2/2i0) £ 01in Qp,.
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Lemma 11. Once again, let p,u,v, T, p, k, i be as in Definition 3. Suppose
that Eq. (3), (4), (5), (7) and (8) are satisfied by p, u, v, T, p, k, and p in Qp,
with the boundary conditions (12), (13), (14), and (15). Then:

b

p(u) = 1 [1 — (u2/2io)] -1 (21)
L CED

plu) = e T (2 /2ig)] and (22)

plu) = es [1— (u?/200)]* ; (23)

where ¢1 = pg To(bfl) ,co=c R7! TO_I, and c3 = pp T}:ﬁ 5.

Proof. As previously seen in Proposition 5, Eq. (3) and (4) are equivalent
to Eq. (9). If the boundary conditions (12) and (13) are known, the Lemma 8
gives Tp > 0 at T'g, Eq. (19), and the expression of temperature in terms of
u, Eq. (20). Then, Eq. (5) provides a value p|r, = po = (n R*1y)/V > 0.
Analogously, regarding Eq. (5), (20), and the last Remark 10, we have that
p # 0 in Q. Thus, from Eq. (7), we get po [(n R*Tp) /po)’ = p [(n R* T) /p]°.
This is, p = po 727~V 76/¢=1) The substitution of Eq. (20) in this last
expression conduces to (21). Similarly, Eq. (21), Eq. (20), and Eq. (6), which
is equivalent to Eq. (5), conduces to (22). Finally, Eq. (23) is a consequence
of Eq. (8), Eq. (20), and the value py, of (15). O

Remark 12. Atmospheric pressure is regarded as the weight impressed
by the column of air over a point z at its base, O.G. Tietjens [28, p. 18].
Dorodnitzyn assumes p to be dependent only of z, and that for each = € (0, L),
p(z,y) is given by its corresponding value p (z, h (z)) at I',. In the Corollary 13,
we emphasize that this can be seen as a consequence of temperature’s observed
linear decrease with height from the Earth’s surface to the troposphere’s upper
border, K. Saha [21, p. 20]. Moreover, this allows us to consider a constant
pressure value determined by the free-stream velocity in Theorem 15 below.

Corollary 13. Under the same conditions as in Lemma 11, let p(x,y) =
g fyoo p(x, z)dz for all (z,y) € Qp, where g is the standard gravity constant. If,
additionally, f > 0 is such that T(x,y) = Ty — By Y(x,y) € Qp, then for all
(z,y) € Qp:

p(z,y) = [1 - (U2/22‘0)]ﬁ; and (24)
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L, [ ©20)]
p(z,y) = (1 — (u? (z,y) [2ip)]

(25)

Proof. From Lemma 11, we have Ty > 0, Eq. (21) and (22). If T'(z,y) =
To — By is substituted in Eq. (16), that is equivalent to the given Eq. (15), and
the corresponding density expression is used in the atmospheric pressure’s defi-
nition p(x,y) = gfyoo p(x,z)dz. Then, In (p (z,y))—In (po) = gB [In ((To — By)/To)]-
For this reason, if y is sufficiently small for the term Sy to be discarded, the vari-
ation of pressure with height may be negligible. Hence, p can be approximated
by its value in each (x,h(x)) € I'y,. The Eq. (21) with values in I'j, implies Eq.
(24). Furthermore, Eq. (25) is inferred from Eq. (24) and (22). O

Lemma 14. Let h and €}, be as in Definition 3, and p, u, v, T, p, kK, i
as in Definition 3. For each L > 0 and H: = max {h(z) | = € [0, L]}, there are
a parameter e: = H/L > 0, and a diffeomorphism ¢¢: Qp — Q, ¢°(z,y) =
(s,7): = (x/L,y/(Le)) for all (x,y) € Q. Also, there is a vector field v¢ =
(uf,v¢) € L? (Qe;RQ) NL.. (Qe;RQ) such that v¢(s,7) = (u(s,7),v°(s,7))
with u¢ (s,7) = (1/L)wu(Ls, Let), v°(s,7) = (1/(Le))v (Ls, LeT); a density
p¢ € LY (£2¢;(0,00)), p(s,7) := c2 [ao]b/(b_l) o~1(s,7), where o denotes o(s,7) =
1 ([Lue (s,7)]2 /21'0), o0 is the number 1 — ([LUE]2 /21'0), and U¢ = (1/L) U
is the free-stream velocity on the curve h® € C?([0,1]) such that h(z): =
h(Ls) /(Le). Analogously, there is a dynamic viscosity p¢ € L}, . (€¢) with

19

€

Ho: = c3025.

Proof. First of all, ¢¢ is linear. Because Ker(¢) = {(0,0)}, it is invertible.
Its Jacobian determinant is |[D¢¢| = 1/(L?¢) > 0. Consequently, by the Inverse
Function Theorem, ¢€ is a diffeomorphism of €2j. Second, the vector field is
obtained via the Chain Rule: Let ¢ € [0,00) be the time, then u® = Js/0t =
(0s/0x)(0x/0t) = (1/L)u. Similarly, we obtain v¢ and the free-stream velocity
U¢. Moreover, if u € L? (Q),

HUH%Q(Qh // (z,y) dx dy = L€ // [Luf)?(s,7) ds dr.

So that,
IRy = LlellulZagr,, < o0 (26)
and u¢ € L?(Q¢). In the same way, u¢ € L}, (Q¢), and v¢ € L}, (Q )N

L? (£2¢). Finally, the density p¢, the curve h¢, and the dynamic viscosity u¢ are
determined by the corresponding commutative diagrams with ¢°. O
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Theorem 15 (Adimensional Model). Let p,u,v,T,p,k,pu be as in
Definition 3. Suppose they satisfy the Dorodnitzyn’s Boundary Layer Model
given by equations (1), (2), (3), (4), (5), (7), (8) with boundary conditions (12),

b

(13), (14), (15), (16), (17). Additionally, assume p = ¢1 [1 — (U?/2i)] @D in
Q4. Then, u¢, and v, as defined in the Lemma 14 above, verify the following
system in €2¢:

div (puf, pv) = 0; and (27)
ouf ouf 0 19 Qu’

L2 2 e € € — i 5% 2

ep(u e +U8T> 6387[02567]’ (28)
with boundary conditions:

(uevveﬂdﬁ(f‘o) = (070); (29)
(u,v%) [ge(r,) = (=LUS,0); and (30)
(u®(0,7),0) = (u(1,7),0), VY7 €[0,6/(Le)]; (31)

where p¢ and o depend of uf, in the way described in Lemma 14.

Proof. Considering the new directions, the generalized partial derivatives
Ou/dx = 0u/0s; Ou/dy = (1/€)Ouc/OT; Ov/dy = Ov/IT; uw(Ou/dx) =
Luf (0u/0s); and v(0u/0y) = L v (0u®/I7). The weak derivative Op/dx = 0
because U is constant. Similarly, p allows us to see

p=cy [L—(U?/2ip)] w1 [1— (u® (z,y) /2i0)] -

Therefore, 0/0y [p(0u/dy)] = L~ te 2c30/07 {0% (8u€/87')] Finally, each
term is substituted on each side of Eq. (1) and (2) to obtain Eq. (27) and
(28). O

2.2. Incompressible Model

The domain’s shape €2p described in Definition 1 is different from the rectan-
gular one in the original Dorodnitzyn’s article. In addition, there is no domain
Q¢ in Dorodnitzyn’s work, because this was obtained with the application of
Bayada and Chambat’s diffeomorphism ¢¢. Therefore, it is necessary to make
an adjustment on Dorodnitzyn’s change of variables to take into account the
points (s,7) € Q¢ over a height ¢ (0,d) = (0,5/(Le)), as is done in Eq. (33)
below. This new diffeormorphism allows us to take the Adimensional Model
into an incompressible form.
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Lemma 16. Let h € C?([0, L], (0,00)) have only one critical point which
is a maximum. Let Q¢ and p® be as described in Lemma 14. Suppose that
the weak derivative Ou/0x = 0 a.e. in Qp. Then, there is a diffeomorphism
n = (n1,m2): Qe — R? such that Vs € [0, 1]:

s 1

(s, ) = /0 e e 0/(Lo); (32)
) 1 € :an

mu(s,7) —/g e e ([0.1) and (33)

m(s,7) = / " (5,€) de: (34)

where § is the preimage of T = h® (§) € h¢ ([0, 1]) such that the slope Oh /s (5) >
0.

Proof. By definition, V(s,7) € Qe, p(s,7) = p(Ls, Ler) > 0. From the
Remark 10, we know that o is positive and bounded by 1. In addition, if h
has one unique critical maximum in its domain, h¢ does as well. In fact, the
top cover of € is given by the curve h¢, where each image 7 = h€(s), different
from its cusp, has exactly two preimages, one of them on the ascending part
of the curve where 0h¢/0s (5) > 0. So that the horizontal segment (S, s) x {7}
is contained in Q. Thus, each Riemann integral 7;(s,7) is the limit of an of
increasing and bounded sequence of Darboux sums which add positive values
taken by the function ¢ over a horizontal and bounded segment contained in
Q. As a result, for each (s,7) € Q, the sequence of sums converges and
71 is well defined. In addition, Remark 10 implies that o is strictly positive.
Then, 7o is a well defined function in Q.. Two of its partial derivatives are
on1/0s = 1/p¢, and dne/OT = p°. By the Monotone Convergence Theorem, if
(Ou/0x) = 0 a. e. in Oy, we calculate the product (On;/0T) (On2/0s) = 0.
Then, the Jacobian determinant |Dn| = 1. Hence, by the Inverse Function
Theorem, 1 is a diffeormorphism of €. O

Theorem 17 (Incompressible Model). Let p,u,v,T,p,k, 1 be as in
Definition 3. Suppose they satisfy the Dorodnitzyn’s Boundary Layer Model
given by equations (1), (2), (3), (4), (5), (7), (8) with boundary conditions (12),
(13), (14), (15), (16), (17), p(x,y) = p(z,h(x)) Y(x,y) € Qp, and du/dx = 0
a.e. in Qp. Consider u¢, v¢, p¢, o, and oy as in Lemma 14, and the domain
1 (Qe) = Q as defined in Lemma 16. Then, there exists a stream-function 1
such that 0¢/0s = — pc v, O /IT = p®uS; and a vector field F¢ = (Ff, Fs) €
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L? (;R*) N L, (% R?), Ff = 0¢/0n, and F§ = —0/0n, that satisfies:

loc
div (Fy,Fs5) = 0 and (35)
OFf OFf 0 OFf
pe{rglergiy - cotg b g, (36)
om onz on on
2
where 1 is the inverse function of , & = con™!, and C = c3c30}" as

denoted in Lemma 11. Moreover, the boundary conditions are given, for all
(771,?72) € 09, by:

Fhlaa (m (s,7),m2(s,7)) = (ulag, (5,7),0). (37)

Proof. First, under these conditions, u¢ and v¢ verify the system described
in Theorem 15, and, according to Lemma 16, n is a diffeomorphism of 2.
Second, Eq. (35) allows the definition of a stream-function given a fixed point
(s0,70) € Q. Third, Eq. (36) is written in terms of its partial derivatives.
Then, these partial derivatives are calculated in the new coordinates 77 and 7.
Finally, the left side and right side of the new equation for the stream-function’s
original partial derivatives is presented in the new directions, and substituted
by the field’s F¢ coordinate functions. The boundary conditions are determined
as a direct result of the vector field’s definition, where it can be seen that it
satisfies the relations: For all (n1,72) € € such that n(s,7) = (m,n2),

0 10
Fi(m.m) = g (mom) = - 52 (sm) = (s, 7); - and (39)
0 0
Fy(m,n2) = _8—:1(?71’772) = —Pea—f(SaT) = —(06)2?16(8’7)' (39)

In particular, the repeated argument made for Eq. (25) and the Cauchy-
Schwarz inequality for the L?-norm implies that the vector F¢ € L? (Q;RQ).
Moreover, F€ € LlloC (Q;RQ) and has inherited locally integrable weak partial
derivatives.

If Eq. (38), for each fixed point (sg,79) € Qe and each (s,7) € €., the
Poincare’s Lemma implies that the integral

v = [ (pv)ds+ (o ar

has the same real value for every 7: [0,1] — Q. such that v(0) = (sg, ) and
(1) = (s, 7). This is, the streamfunction ¢ is well defined on €.
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In order to calculate its derivatives, it is enough to pick a trajectory built
by pieces where one variable is fixed. Substitution of u¢ and v in terms of
the streamfunction’s derivatives, 0¢/ds = — p v and 9 /0T = puc, and the
hypothesis that p¢ is not null at any point of its domain, allows us to write Eq.
(36) in terms of 1 as:

722000 110y 099 110yl 0| 19 (10
“1oros|pcor| dsor|pcor||” Cor |7 ar\pcor)|

Additionally, there is a new domain 2 C R? where:

00 _ Do _ 00 0v_ oo _ 10v

_ _ - - . 4
ar  omor L og O Bs  Om ds  pcom (40)

Once again, substitution of identities in Eq. (40) in the left side of the equation
above and the definition of ¢ give a new expression for the nonlinear term as:

122 ['o‘_w o a%q OFf
om

e OOy  Om On3

L% [Ff

IFs
+ F§ 1]

oo

Similarly, by the second identity in Eq. (40) and the definition of Fy, the right
side of the same equation is:

o Q[0 (LONT O O [ us (0%
Yor |7 or \ror )] T Cor o |7 on3
WENEPE

= _— g _—

7 o on3

P, D {0 8Ff]

2 ~
= C(C3Cq 0, (o2 —_—
2Tt o2 o2

1

©

™)
t

p

Therefore, the vector field F¢ € L? (Q; RQ) N LlloC (Q; RQ), and its locally inte-
grable weak partial derivatives, satisfy the incompressible system of Eq. (35)
and (36) with boundary conditions given by Eq. (37). O

2.3. Dorodnitzyn Boundary Layer Limit Formula
Alberto Bressan’s [5] book Lecture Notes on Functional Analysis: With Appli-

cations to Linear Partial Differential Equations provides an excellent account
of Sobolev Embeedding Theorems, as they will be used in this section.
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Theorem 18. Under the same hypothesis of Theorem 17, there is an
estimate:
(6] U3

IVE | 20m2) < 55 (41)

Proof. From Theorem 17, the vector field F€ = (FY, Fs) verifies the system
of Eq. (35) and (36) in € with boundary conditions determined by (37). In
particular, there is an underlying assumption that the Laplacian

2 1€

because the conservation of momentum equation for Fy is considered null. Fur-
thermore, from du/dz = 0 a.e. in Qp, and Eq. (38), it can be seen that:
O°Ff
ot

- 0. (43)

Let Fi (F°) denote the inner product in L? (£2;R?) of F© and the vector
(F€-V)Fc= (Zi:l o Ff Z—:?) Y in the space L? (Q;RQ). Namely,
’ i) j=1,

2
L [ 2(5)
]:1 (F ) - 5 //ﬂ i;Q FZ j;Q 3?% dn.

From Eq. (38) and the boundary conditions (29), (30), and (31) for v¢, we
have:

F5lan = 0. (44)

If div (Ff, Fs) = 0, by the Gauss-Ostrogradsky Theorem and Eq. (44):
€ 1 € € N € €
A = =g [[ {0+ @) dio ) an

1 2
- Fe .

+2/m(( £2,0) - nds,

1 3

- - Ft - nd

where n is the outward pointing unitary normal vector field of the topolo-
gical boundary 0. Because 1 is a diffeomorphism, n (9Q,) = Q. This is,
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9 = n (¢ (L)) Un (¢° (Ao)) Un (¢ (AL)) Um (¢° (T'4)). The no-slip boundary
condition for Ff in n (¢ (I'g)) is inherited from u® by Eq. (29). In this way,

/ ((Ff)3,0) ndS = 0.
n(¢*(T0))

The periodic boundary conditions of u¢ established in Eq. (31) imply that
V1 € 10,0/ Le], or for all (1,7) € n (¢ (AL)):

m (L) = ¢lagCY ( [[ue(l,T)]Q — [u (O,T)]Q])

62—100—b/(b—1)'

In addition, 7,(0,7) = 0 V7 € [0,d/Le], i.e V(0,7) € n(¢°(Ap)). Thus, the
partial derivatives On; /01 (0,7) = dm /07 (1,7) = 0 V7 € [0,6/Le], and the
boundary’s sections 1 (¢ (Ag)) and 1 (¢¢ (AL)) are vertical. Consequently, Eq.
(38) implies that:

5
/ ((Ff)3,o) ndS = —/“ e 0,7)° 2 (0, 7) dr = 0.
n(¢(Ao)) 0 or

Similarly,

/ ((Ff)3,0) ‘ndS = 0.
n(é°(AL)

As a result, the product Fi (F) is determined only by the free-stream velocity:
1
Fi(F) = = / ([-LU,0) - ndS. (45)
2 Jaeen))

Let Fo (F¢) designate the product of F° and the vector corresponding to
the right side of Eq. (36) in the space L* (©;R?):

Fo (F¢) = / (Ff,F5) - (C’Jlai?72 [~ 35 E;%} , 0> dn,

0 6 8FE
= Fegt o 25 .
C// L7 oy [ 3772} an

In fact, =% > 1 in Q. Then, by the Gauss-Ostrogradsky Theorem, Eq. (38),
and the boundary conditions (29), (30) and (31), we have:

0 6 OFF
Fo(F) > C Ff— zs—l] dn,
2 (F) = //n oy [U o2 L
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Ff 1 Ff)?
//(3 ) _/ 0, 2F) s
oz 2 Joa oy

OF,
- ()

e
This is because the restriction of F} to n (¢ (I'y)) is constant, the derivative
OFf /0n2|n(se(r,,)) = 0, and the periodic boundary condition (31) makes vertical
the sections 1 (¢ (Ao)) and 1 (¢ (Ar)), so that the normal n |, ge(ag))un(ge(r,)) =

(+1,0).
In similar fashion, given Eq. (43) and OFf/0n1 |y« r,)) = 0:

8Ff>2 / / (OPFf
dn = — || Ft d
/ /n (5771 K Vo
+ / ( O o) ndS = 0.
ne) \ - Om’

And, in the same way, Eq. (42) and (44) imply that:

Z// (%iffdn - _//QFfAFMn—O.

1=1,2

Y

—C

Therefore, if Eq. (36) is satisfied by F¢, then F; (F°) = Fa (F°), and Eq.

(45) gives:
oF
Fe R2) = 1
IVF ez // (25) an

<

([LUP?,0) - ndS.
20 n(¢(T1))

Finally, each density value p = p¢ < ¢g, and 9n;/0s = p© in 2. Hence,

1 €13 8771 €
U . <

CQU3

< .
- 2C
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Theorem 19. Without loss of generality, assume L, H > 1. Under the
same hypothesis of Theorem 17, and the additional existence of locally inte-
grable generalized derivatives up to order 2 for u, we obtain that u is a weak
solution to the limit formula:

2u u
fa _ af o (46)

oF T oy oy
in L? (Qh;RQ), where f = [1 _ (u2 (z,) /22‘0)}*%,

Proof. If v = (u,v) € L? (Qh;RQ), and L?¢ = LH > 1:

//ﬂ (FY ("71,?72))2 dmdn, = //ﬂé (uf (8,7’))2 ds dr

= LH// (u(2,y))? du dy
Qp,

In a similar manner, the estimate p© < co implies that:

//Q (F5 (m,m2))? dmdny = //ﬂe ((pe)2 Ve (5,7)>2 ds dr

< & LH |[v||72(q,)-

Therefore,

3
2 2 4 9 U
[F r2m2) < L{Huu|rL2mh)+c2HHvHL2(Qh)+W}.

Thus, the sequence (F) is contained and bounded in the Sobolev Space W? (£2; R?)
by a constant value independent of the parameter ¢ > 0. As a consequence,
the Rellich-Kondrachov compactness theorem, A. Bressan [5, p. 173, 178], im-
plies that it has a subsequence (F>) that converges strongly in L? (Q; RQ), and
the sequence OFf/Ony converges weakly in L2 () to the generalized derivative
OF; /Ony of the limit F = ([, Fy) € L? (Q;RQ). But, Ff = u® = 1/Lu for all
€ > 0. Then, the horizontal velocity u is a weak solution of the limit formula,
Eq. (46), in L? (©25) when the parameter € tends to 0. O
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3. Conclusion

The obtained limit formula suggests that there is no separation of the Boundary
Layer under this conditions, but it shows that it is possible to study the change
of the horizontal velocity of atmospheric wind with height near the surface by
means of simpler models. There are two immediate problems to work on: First,
to obtain solutions to the Reynolds’ limit model by the application of fractional
calculus methods. Second, to consider the case where the Neumann condition
IT/0z|,=0 = m is a constant m # 0.
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