An existing compartmental model of vector-borne diseases is considered to incorporate vertical transmissions in the vector and the host populations. The effects of extrinsic incubation rate of the disease causing pathogen in mosquitoes on the epidemic as well as the endemic nature of the disease are assessed for different values of model parameters. Our numerical simulations indicate that if measures such as personal protection and mosquito control are intensified, then the negative effects of weather-enhanced parameters could be significantly diminished. The effectiveness of these measures is also shown to reduce epidemic levels due to vertical transmissions in the vector as well as the host populations. The existence of a backward bifurcation and its reactions to changes of parameters reacting to temperature increase and the global stability of the disease-free equilibrium, under some conditions are analytically established.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] B. Adams, M. Boots, How important is vertical transmission in mosquitoes for the persistence of dengue?, Epidemics, 2, No 1 (2010), 1-10;
doi: 10.1016/j.epidem.2010.01.001.
[2] M. Artzrouni and J-P. Gouteux, A model of Gambian sleeping sickness with open vector populations, J. of Math. Applied in Medicine and Biology, 18 (2001), 99-117;
doi: 10.1093/imammb/18.2.99.
[3] S. Baqar, C.G. Hayes, J.R. Murphy, D.M. Watts, Vertical transmissionWest Nile virus by Culex and Aedes species mosquitoes, Am J. Trop. Med Hyg, 48, No 6 (1993), 757-762. of
[4] K.W. Blayneh, J. Mohammed-Awel, Insecticide-resistant mosquitoes and malaria control, Mathematical Bioscience, 252 (2013), 14-26;
doi: 10.1016/j.mbs.2014.03.007.
[5] K.W. Blayneh, A.B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile virus, Bulletin of Math. Biol., 72 (2010), 1006-1028;
doi: 10.1007/s11538-0099480-0.
[6] K. Blayneh, Y. Cao and Hee-Dae Kwon, Optimal control of vector-borne diseases: treatment and prevention, Discrete and Cont. Dyn. Sys. Series B, 11, No 3 (2009), 587-611;
doi: 10.3934/dcdsb.2009.11.587.
[7] C. Bowman, A.B. Gumel, P. van den Driessche, J. Wu and H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bulletin of Math. Biol., 67 (2005), 1107-1133;
doi: 10.1016/j.bulm.2005.01.002.
[8] P. Buekens, O. Almendares, Y. Carlier, E. Dumonteil, M. Eberhard, R. Gamboa-Leon, M. James, N. Padilla, D. Wesson and X. Xiong, Motherto-child transmission of chagas’ disease in North America: Why don’t we do more?, Maternal and Child Health J., 12 (2007), 283-286;
doi: 10.1007/s10995-007-0246-8.
[9] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci.Eng, 1, No 2 (2002), 361-404.
[13] M. Chan, M.A. Johansson, The incubation periods of dengue viruses, PLoS ONE 7, No 11 (2012), e50972;
doi: 10.1371/journal.pone.0050972.
[14] N. Chitnis, J.M. Cushing and J.M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67 (2006), 24-45;
doi: 10.1137/050638941.
[15] N. Chitnis, J.M. Hyman and C.A. Manore, Modelling vertical transmission in vector-borne diseases with application to Rift Valley fever, J. Biological Dynamics, 7 (2013), 11-40;
doi: 10.1080/1751358.2012.733427.
[16] G. Chowell, B. Cazelles, H. Broutin and C.V. Munayco, The influence of geographic and climate factors on the timing of dengue epidemics in Perú 1994-2008, Bio Med Central Infectious Diseases, 11, No 164 (2011);
doi: 10.1184/1471-2334-11-164.
[17] J.K. Chye, C.T. Lim, K.B. Ng, J.M. Lim, R. George, S.K. Lam, Vertical transmission of dengue, Clin. Infect. Dis., 25, No 6 (1997), 1374-1377.
[18] C. Cosner, J.C. Bejer, R.S. Cantrell, D. Impoinvil, L. Kapitanski, M.D. Potts, A. Troyo, S. Ruan, The effects of human movement on the persistence of vector-borne diseases, J. of Theoretical Biology, 258, No 4 (2009), 550-560;
doi: 10.1016/j.jtbi.2009.02.016.
[19] G. Cruz-Pacheco, L. Esteva, C. Vargas, Seasonality and outbreaks in West Nile virus infection, Bulletin of Math. Biology, 71, No 6 (2009), 1378-1393;
doi: 10.1007/s11538-00909406-x.
[20] M. Diallo, J. Thonnon, D. Fontenille, Vertical transmission of yellow fever virus by Aedes Aegypti (Diptera Culicidae): Dynamics of infection in F1 adult progeny of orally infected females, Am J. Trop. Med. Hyg, 62:1 (January 2000), 151-156.
[21] J. Dushoff, H. Wenzhang and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases, J. Math. Biol., 36 (1998), 227-248;
doi: 10.1007/s002850050099.
[22] G. Fan, J. Liu, P. van den Driessche, J. Wu, H. Zhu, The impact of maturation delay of mosquitoes on the transmission of West Nile virus, Math Bioscience, 228, No 2 (2010), 119-126;
doi: 10.1016/j.mbs.2010.08.010.
[23] Z. Feng and J.X. Velasco-Hernández, Competitive exclusion in a vectorhost model for the dengue fever, J. Math. Biol., 35 (1997), 523-544.
[24] H.D. Gaff, D.M. Hartley, N.P. Leahy, An epidemiological model of Rift Valley fever, Electornic J. of Differential Eq., 2007, No 115 (2007), 1-12.
[26] L.B. Goddard, A.E. Roth, W.K. Reisen, T.W. Scott, Vertical transmission of West Nile virus by three California Culex species, J. Med Entomol., 40, No 6 (2003), 743-746;
doi: 10.1603/0022-2585-40.6.743-746.
[27] J.K. Hall, Ordinary Differential Equations, Wiley-Interscience, New York, NY (1969).
[28] S. Hales, N. de Wet, J. Maindonald, A. Woodward, Potential effectpopulation and climate changes on global sistribution of dengue fever: An empirical model, Lancet, 360 (2002), 830-834;
doi: 10.1016/S01406736(02)09964-6.
[29] E.J. Hanford, F.B. Zhana, Y. Lu, and A. Giordano, Chagas disease in Texas: Recognizing the significance and implications of evidencethe literature, Social Science & Medicine, 65, No 1 (2007), 60-79;
doi: 10.1016/j.socscimed.2007.02.041.
[30] D.M. Hartley, C.M. Barker, A. Le Menach, T. Niu, H.D. Gaff and W.K. Reisen, Effects of Temperature on Emergence and Seasonality of West Nile Virus in California, Am. J. Trop. Med. Hyg. 86, No 5 (2012), 884-894;
doi: 10.4269/ajtmh.2012.11-0342.
[32] J. Jiang, Z. Qiu, J. Wu and H. Zhu, Threshold conditions for West Nile virus outbreaks, Bulletin of Math. Biol., 71 (2009), 627-647;
doi: 10.1007/s11538-008-9374-6.
[33] V. Joshi, D.T. Mourya, R.C. Sharma, Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes, Am. J. Trop. Hyg., 67, No 2 (August 2002), 158-161.
[34] L.V. Kirchhoff, American Trypanosomiasis (Chagas’ Disease)– A Tropical Disease Now in the United States, N Eng. J. Med., 329 (1993), 639-644;
doi: 10.1056/nejm199308263290909.
[35] J. Li, Simple mathematical models for interacting wild and transgenic mosquito populations, Mathematical Biosciences, 189, No 1 (2004), 39- 59;
doi: 10.1016/j.mbs.2004.01.001.
[36] C. Menendez and A. Mayor, Congential malaria: The least known consequence of malaria in pregnancy, Seminars & Neonatal Medicine, 12, No 3 (2007), 207-213;
doi: 10.1016/j.siny.2007.01.018.
[37] P.E. Parham, E. Michael, Modeling the effects of weather and climate change on malaria transmission, Environ. Health Perspect., 118 (2010), 620-626;
doi: 10.1289/ehp.0901256.
[38] L. Rosen, R.B. Tesh, J.C. Lien, J.H. Cross, Transovarial transmissionJapanese encephelitis virus by mosquitoes, Science, 199, No 4331 (February 1978), 909-911;
doi: 10.1126/science.203035.
[39] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equibria for compartmental models of disease transmission, Mathematical Biosciences, 180, No 1 (2002), 29-48;
doi: 10.1016/s0025-5564(02)001108-6.
[40] P. Waltman, A Second Course in Elementary Differential Equations, Academic Press, Inc. Orlando, Florida 32887 (1986).
[41] D.M. Watts, D.S. Burke, B.A. Harrison, R.E. Whitmire, A. Nisalak, Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Am. J. Trop. Med. Hyg., 36 (1987), 143-152.