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Abstract: An existing compartmental model of vector-borne diseases is con-
sidered to incorporate vertical transmissions in the vector and the host popu-
lations. The effects of extrinsic incubation rate of the disease causing pathogen
in mosquitoes on the epidemic as well as the endemic nature of the disease are
assessed for different values of model parameters. Our numerical simulations
indicate that if measures such as personal protection and mosquito control are
intensified, then the negative effects of weather-enhanced parameters could be
significantly diminished. The effectiveness of these measures is also shown to
reduce epidemic levels due to vertical transmissions in the vector as well as
the host populations. The existence of a backward bifurcation and its reac-
tions to changes of parameters reacting to temperature increase and the global
stability of the disease-free equilibrium, under some conditions are analytically
established.

AMS Subject Classification: 92D30, 37J20, 34D23
Key Words: backward bifurcation, vertical transmission, extrinsic incubation
rate

1. Introduction

In addition to horizontal transmission cycle (vector-host-vector), some mosquito

Received: March 1, 2017 c© 2017 Academic Publications



178 K.W. Blayneh

species pass the disease causing pathogens to their progeny by transovarian
transmission (also known as vertical transmission). While infected hosts are
absent, disease carrying adult mosquitoes emerge following favorable weather
conditions (such as hot weather and abundant rainfall). One possible reason
for this is disease transmission to eggs which survive a dry season to evolve into
adult stage as infectious [1, 19]. Furthermore, the configuration of weather con-
ditions such as, favorable temperature and precipitation affects the biological
dynamics of the vector as well as the disease causing pathogen. Transmission
potential of vector-borne diseases are also affected by a small increase of tem-
perature as it is documented in studies of malaria and dengue fever [28, 37].
The addition of vertical transmission to this could bring substantial challenges
to the fight against disease burden.

Vertical transmission is observed in dengue virus transmitting mosquitoes of
Aedes aegypti, Aedes albopitus and Culex species [1, 21, 33] and other mosquito-
borne flavivirus [38]. Similarly, the survival of the Rift Valley fever (RVf)
causing virus in infected eggs of Aedes aegypti is likely a key factor in the
epidemic cycle following extreme climate and weather events (such as extreme
temperature along with heavy rainfall and flood). It should also be noted that
although Rift Valley fever is transmitted by two species of mosquitoes, Culex
and Aedes aegypti, only the Aedes aegypti species transmit the pathogen to their
progeny [15, 24]. Additionally, vertical transmissions of West Nile virus (WNv)
in Culex and Aedes aegypti species of mosquitoes [3, 26], and yellow fever in
Aedes aegypti [20] are known challenges.

Vertical transmissions of a few vector-borne diseases also occur in host popu-
lations and this could contribute to the emergence of the disease in non-endemic
areas, owing it to human movement [18]. Notable examples include sleeping
sickness (African trypanosomiasis) [2, 42] and Chagas disease [8, 29, 34]. In
rare cases, mother-to-child transmission of some vector-borne diseases occur,
for example, malaria (related to delivery) [36] and dengue fever due to blood
transfusion, breast feeding [12] or dengue related complications during preg-
nancy [17]. However, while vertical transmission plays part of the role for
emergence and reemergence of these diseases [16, 36], their prevalence in the
host and the mosquito populations is enhanced when, among other factors, per-
sonal protection and mosquito control are poor. Part of our work will look into
these and the role of extreme weather conditions on the dynamics of vector-
borne diseases.

The effects of extreme weather conditions on the dynamics of vector-borne
diseases in general are vital challenges to the fight against many vector-borne
diseases [13, 41]. Extreme temperatures such as very hot and dry followed by
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heavy rain could cause emergence of vector-borne diseases where initial epi-
demic could lead to endemic state. The pre-adult stages in aquatic habitat of
Anophelis and Aedes aegypti synchronize with rising temperature that sustains
mosquito survival. This increases the recruitment of adult mosquitoes of these
species which are known to transmit diseases (such as WNv, RVf, dengue and
malaria). Recently, a number of cases have been studied to address the connec-
tions between extreme weather conditions and vector-borne diseases. Among
them, WNv [19, 30], dengue virus [1], malaria [37] and RVf [15, 24] are some
examples worth mentioning.

Extreme weather could reduce the average time interval for the pathogen to
complete its life cycle in the vector (also known as extrinsic incubation period).
This gives the adult female mosquito ample time to transmit the disease to
susceptible hosts before it dies. Furthermore, high temperature also increases
the incubation rate of mosquitoes (shorten the development time from egg to
adult stage) in the mean time causing the mosquito density to increase. Another
parameter affected by high temperature is the biting rate of the vector, which
could increase the rate of effective contacts with the host. In perspective, rising
temperature and precipitation facilitate conditions that could trigger emergence
or reemergence and outbreak of vector-borne diseases, especially for vertically
transmitted vector-borne diseases. Our work assesses the endemic and epidemic
effects of key parameters such as extrinsic and intrinsic incubation rate, disease-
induced death rate of hosts, vertical transmission and personal protection.

A number of mathematical models, specifically systems of differential equa-
tions of vector-borne diseases have been developed to assess the potential im-
pacts of different measures to mitigate disease burden (see for example, dengue
fever [1, 16, 25, 23], Rift Valley fever [15, 24], West Nile virus [5, 7, 19, 31, 32]
and sleeping sickness [2]). However, very few models have incorporated vertical
transmission in mosquitoes, some examples are: the connection of epidemic sea-
sonal changes and vertical transmission of RVf in some mosquito vectors [15],
the vaccination of livestock and the problem of larvacide-based interventions
[24], emergence of seasonal outbreak of WNv from the endemic state [19], and
maturation delay of mosquitoes and its impact on outbreak of WNv [22]. Ad-
ditionally, the efficiency of vertical transmission to cause outbreaks of dengue
virus is addressed in [1].

This paper is organized as follows. The model studied in [6] is extended
to incorporate vertical transmission and density dependent recruitment rate
in the host population and an invariant subset of the positive octant is pro-
vided in Section (2). In Section (3), an epidemiological threshold is formu-
lated and the asymptotic dynamics of the model, specifically, the existence of
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a backward bifurcation and the effects of key model parameters, such as, the
disease-induced death rate, mosquito-to-human ratio and disease transmission
rates is established. Simulation results about the effects of increased extrinsic
incubation rate on the bifurcation and on the endemic level are also presented
in Section (3). Other simulations about the epidemic levels of the disease and
their reactions to vertical transmission in the vector and the host, and disease
transmission rates are provided in Section (5). Then the global stability of the
disease-free equilibrium point is established in Section (6) which is followed by
concluding remarks in Section (7).

2. The Main Model

A model for a vertically-transmitted vector-borne disease is formulated extend-
ing what is given in [6]. To this end, the host population is grouped into four
compartments: susceptible, exposed (no symptom), infectious and treated (or
immune) which are denoted by x1, x2, x3 and x4, respectively and the total
population size of the host is N = x1 + x2 + x3 + x4. On the other hand, the
vector population is grouped into three compartments, susceptible, exposed and
infectious with sizes y1, y2 and y3, respectively with the total population of the
vector given by P = y1 + y2 + y3.

In [6], it is assumed that vectors are exposed after biting only an infectious
host, but in this work, a more realistic approach is considered: vectors are
assumed to be exposed after they bite (with average contact rate φ per day)
an infectious host or a host who is exposed to the disease but asymptomatic
and could transmit the disease. This means, infection in the vector population
is the sum of two incidence functions namely, φθ1x3

N
which describes infection

by biting infectious hosts, and φθ2x2

N
infections due to biting exposed hosts who

carry the infection in their blood. Thus, the incidence function for vectors is

φθ1x3
N

+
φθ2x2
N

.

The exposed vectors become infectious after an incubation period of 1/ε. Note
that θ1 and θ2 are transmission efficacy of the disease from infectious and ex-
posed hosts, respectively. Once infected, vectors carry the disease throughout
their life time. In the host population, the exposed group, x2, increases as a
result of effective bites from infectious vectors (with incidence function φβy3x1

N
),

those who carry it from birth (from infected parent Λζ1x3). The exposed group
is diminished due to disease progression, but the incubation period 1

d
for inoc-

ulated host could vary even remarkably and we take average values. Because
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Parameter Description (rates are per day)

µ host death rate (when density is ignored)

ζ1 vertical disease transmission rate (in the host)

ζ2 vertical disease transmission rate (in the vector)

δ0 average number of new adult female mosquitoes

δ1 a factor for density dependent maturation of mosquitoes to
adulthood

Λ per capita birth rate of host

r host recovery rate

β the probability that the disease is transmitted
from an infected vector to a host per contact

ρ host recruitment rate (assumed susceptible)

φ the number of contacts between a host and a vector

α disease-induced host death rate

ψ fading rate of treatment to make hosts susceptible to the
disease

γ density independent death rate of vectors

ε incubation rate of the disease in a vector

d incubation rate of the disease in a host

θ1 transmission efficacy of the disease from infectious host to
vector

θ2 transmission efficacy of the disease from exposed host to
vector

Table 1: Model parameter and their descriptions.

of a delayed time in hosts to stay as exposed but asymptomatic, incubation
periods are also important parameters in models of vector-borne diseases.

The size of infectious hosts, x3, is reduced due to recovery at a rate of r and
also as a result of disease-induced death rate, α, and natural death which is
assumed to have the same rate µ in each class. The susceptible host population
is increased as a result of new recruits (by birth) and from addition of treated
hosts who lost immunity (at a rate of ψ). Earlier models of different vector-
borne diseases in malaria [14], dengue fever [23], sleeping sickness [2] and West
Nile virus [5] have all made the assumption of susceptibility (losing immunity)
after recovery. Lasting protective immunity against any one of the vector-borne
diseases which are known to have a wide spread effects is not known yet. The
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foregoing modeling assumptions extend the model given in [6] to

dx1
dt

= ρ+ Λ(x1 + x2 + x4) + Λ(1− ζ1)x3 + ψx4 −
βφy3x1
N

− µx1

dx2
dt

=
βφy3x1
N

+ Λζ1x3 − dx2 − µx2

dx3
dt

= dx2 − (r + α+ µ)x3

dx4
dt

= rx3 − (ψ + µ)x4

dy1
dt

= δ0 + δ1(y1 + y2) + δ1(1− ζ2)y3 −
φθ1x3y1
N

− φθ2x2y1
N

− γy1

dy2
dt

=
φθ1x3y1
N

+
φθ2x2y1
N

+ δ1ζ2y3 − εy2 − γy2

dy3
dt

= εy2 − γy3,

(2.1)

with initial conditions xi(0) ≥ 0, i = 1, · · · , 4 and yi(0) ≥ 0, i = 1, 2, 3. If
ζ1 = ζ2 = θ2 = 0, and if the birth rates in both populations are constant, this
model reduces to the model studied in [6]. A list of parameters along with their
definitions is given in Table 1.

Adding the first four equations in (2.1) yields the dynamics of the host
population

dN

dt
= ρ+ ΛN − αx3 − µN ≤ ρ+ ΛN − µN. (2.2)

Note that dz
dt

= ρ + Λz − µz is a one-dimensional autonomous equation with

attracting set [0, N∗], where N∗ = ρ
µ−Λ is a positive equilibrium point of dz

dt
=

ρ+Λz−µz, µ > Λ. It should be noted that in the absence of disease-induced
death rate, this describes the dynamics of the total population, with equilibrium
N∗. Moreover, from differential inequality [27], (2.2) implies that N(t) ≤ z(t)
for N(0) ≤ z(0). Thus, for initial values 0 ≤ N(0) ≤ N∗ the host population
size N(t) remains in [0, N∗]. Furthermore, if N(0) > N∗ then N(t) approaches
N∗. Similarly, adding the last three equations in (2.1), yields the dynamics of
the vector population

dP

dt
= δ0 + δ1P − γP (2.3)

with a positive equilibrium P ∗ = δ0
γ−δ1

, γ > δ1. It is clear that for initial values
0 ≤ P (0) < P ∗ the vector population P (t) remains in [0, P ∗].
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Define vectors X and Y by X = (x1, x2, x3, x4) and Y = (y1, y2, y3). Based
on the above discussion, the set

Ω = {(X,Y ) ∈ R4
+ ×R3

+,

4∑

i=1

xi ∈ [0, N∗],

3∑

i=1

yi ∈ [0, P ∗]} = [0,
ρ

µ− Λ
]× [0,

δ0
γ − δ1

]. (2.4)

is forward invariant under system (2.1) and furthermore, it is attractor. More-
over, for N(0) ≥ ρ

µ−Λ , N(t) → ρ
µ−Λ . Similarly, P (0) ≥ δ0

γ−δ1
implies that

P (t) → δ0
γ−δ1

. Putting these results together, we have the following theorem.

Theorem 2.1. Ω is positively invariant under system (2.1).

We study the model given by (2.1) restricting the state variables to Ω.

3. Epidemiology Threshold

The disease-free equilibrium point (DFE) of (2.1) is

E0 = (x∗1, 0, 0, 0, y
∗
1 , 0, 0), (3.1)

where x∗1 =
ρ

µ−Λ , y
∗
1 = δ0

γ−δ1
, γ > δ1, µ > Λ.

The basic reproduction number, R0, is defined as the number of secondary
infections that one infectious individual infects during the time period it sur-
vives as infectious in a susceptible population, and where the disease is vertically
transmitted. The epidemiological threshold R0 is vital to draw many conclu-
sions which are linked to model parameters. In this paper one of our goals are
to investigate the dynamic effects of model parameters which are influenced by
extreme weather changes along with vertical transmission and those connected
to disease control measures. The threshold R0 will serve this purpose. This
threshold could have different forms depending on the specific approaches im-
plemented to derive it (see for example, [24], [39]), however, its definition and
use remain the same: it is an index used in control methods, it further indicates
conditions which could make the disease endemic. We calculate R0 by using
the approaches in [39]. To do this, we define a vector valued function F̃1 for
rate of new infection cases in the infected and recovered groups of populations
in x2, x3, x4, y2, y3, which is
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F̃ = (
βφy3x1
N

+ Λζ1x3, 0, 0,
φθ1x3y1
N

+
φθ2x2y1
N

+ δ2ζ2y3, 0).

We also define another function Ṽ for the transmission terms between the dis-
ease infected compartments listed above and the exit terms (by mortality or
emigration), that is,

Ṽ = (k1x2,−dx2 + k3x3,−rx3 + k2x4, k4y2,−ky2 + γy3),
where the parameters ki, i = 1, ..., 4 which are used for clarity, are given by

k1 = d+ µ, k2 = ψ + µ, k3 = r + α+ µ, k4 = ε+ γ. (3.2)

Next, we evaluate F and V, which are the Jacobian matrices of F̃ and
Ṽ , respectively evaluated as functions of the vector (x2, x3, x4, y2, y3) at the
disease-free equilibrium E0 given by (3.1),

F =




0 Λζ1 0 0 βφ
0 0 0 0 0
0 0 0 0 0

θ2φy1
x1

θ1φy1
x1

0 0 ζ2δ2
0 0 0 0 0



, V =




k1 0 0 0 0
−d k3 0 0 0
0 −r k2 0 0
0 0 0 k4 0
0 0 0 −ε γ



.

Clearly,

V −1 =




k−1
1 0 0 0 0

d(k1k3)
−1 k−1

3 0 0 0

rd(k1k2k3)
−1 r(k1k2)

−1 k−1
2 0 0

0 0 0 k−1
4 0

0 0 0 ε(k4γ)
−1 γ−1




and as it is given in [39], the basic reproduction number R0(ζ) is defined as the
spectral radius of

FV −1 =




Λζ1d
k1k3

Λζ1
k3

0 βφε
k4γ

βφ
γ

0 0 0 0 0
0 0 0 0 0

θ1φy1d
x1k1k3

+ θ2φy1
x1k1

θ1φy1
x1k3

0 δ1ζ2ε
k4γ

δ1ζ2
γ

0 0 0 0 0



.

Thus, the spectral radius of FV −1 is

R0(ζ1, ζ2) = ρ(FV −1)

=
1

2
(
ζ1Λd

k1k3
+

ζ2δ1ε

γk4
) +

√

[
1

2
(
ζ1Λd

k1k3
− ζ2δ1ε

γk4
)]2 +R2

h, (3.3)
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where

Rh = φ

√
βε(θ1d+ θ2k3)y∗1

γk1k3k4x∗1
, (3.4)

with x∗1 =
ρ

µ−Λ and y∗1 = δ0
γ−δ1

. Note that Rh is the basic reproduction number
for horizontal transmission of the disease where as, the terms with ζ1 and ζ2 are
contributions from vertical transmissions of the disease in the host and the vec-
tor, respectively. It should be clear that in the absence of vertical transmission
in the host population (ζ1 = 0), R0 reduces to

R0 = R0(0, ζ2) = ρ(FV −1) =
ζ2δ1ε

2γk4
+

√
(
ζ2δ1ε

2γk4
)2 +R2

h. (3.5)

Our model could be applied to study a vector-borne disease where vertical
transmission takes place in the host population like in Chaga’s disease and Rift
Valley fever through birth or exposure to infected blood or tissue. In more
general cases, such as these, the threshold R0(ζ1, ζ2) given by (3.3) could be
implemented. However, for diseases like West Nile virus and dengue virus,
vertical transmission in the host is less common. On the other hand, vertical
transmission of diseases such as dengue virus, RVf and WNv is common in
some mosquito species. Motivated by these reasons, we set ζ1 = 0 throughout
the analytical part of our work. However, simulation results are presented to
highlight the reaction of disease epidemic as vertical transmission of the disease
in the host increases relative to vector-host contact rates. By Theorem 2 in [39]
the disease-free equilibrium point, E0, of (2.1) is locally asymptotically stable
when R0 < 1 and unstable when R0 > 1. Thus, we have the following theorem.

Theorem 3.1. The disease-free equilibrium point E0, of system (2.1) is
locally asymptotically stable if R0 < 1 and unstable if R0 > 1, where R0 is
defined by (3.3).

Theorem (3.1) highlights that when R0 < 1 the disease could be elimi-
nated for small initial values. Bifurcation analysis is done on the model (2.1)
to see how the dynamics of the disease reacts to changes in key parameters
such as disease-induced death rate and those connected to mosquito dynamics,
such as vertical transmission rates, extrinsic and intrinsic incubation rates and
mosquito-to-host ratio. Basically, these parameters are influenced by climate
conditions and the results in the coming two sections will address that.
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3.1. Endemic Equilibrium Points

Essentially, the reproduction rates of the host and the vector are both density
dependent. To this end, recall that the disease-free equilibrium is

E0 = (x∗1, 0, 0, 0, y
∗
1 , 0, 0),

where x∗1 =
ρ

µ−Λ , µ > Λ, y∗1 = δ0
γ−δ1

and γ > δ1. Furthermore, since we focus on
vertical transmission in the vector, we set ζ1 = 0. With these, the reproduction
number R0 = R0(ζ2) given by (3.5) reduces to

R0 =
ζ2δ1ε

2γk4
+

√
(
ζ2δ1ε

2γk4
)2 +R2

h, (3.6)

where

Rh = φ

√
βδ0ε(µ − Λ)(dθ1 + k3θ2)

ργ(γ − δ1)k1k3k4
. (3.7)

Next, we define some constants to be used in the endemic equilibrium point,
E1 = (x∗1, x

∗
2, x

∗
3, x

∗
4, y

∗
1 , y

∗
2, y

∗
3) - we drop ∗ for clarity. We study the dynamics

of system (2.1) as the threshold R0 changes. The components of the endemic
equilibrium points E1 = (x1, x2, x3, x4, y1, y2, y3) satisfy the equations

x1 =
x2k1
π1

, x3 =
dx2
k3

, x4 =
drx2
k2k3

and x2 =
ρk2k3π1
Aπ1 +B

, (3.8)

y1 = (
γk4 − ζ2δ1ε

γπ2
)y2, y3 =

εδ0π2
Fπ2 +G

, y2 =
γπ2δ0

Fπ2 +G
, (3.9)

where

π1 =
φβy3
N

, π2 =
φ(θ1x3 + θ2x2)

N
,

F = (γ − δ1)k4, G = (γ − δ1)(γk4 − ζ2δ1ε), (3.10)

with

A = (µ− Λ)((ψ + µ)(d+ r + α+ µ) + rd) + dα(ψ + µ) > 0,

B = k1k2k3(µ − Λ),

D = (ψ + µ)(r + α+ µ) + d(ψ + µ) + dr and

N = x1 + x2 + x3 + x4 =
ρ(k1k2k3 + π1D)

π1A+B
.

(3.11)

Note that γk4 > ζ2δ1ε which could be verified from γ > δ1 and k4 > ε.
Thus, F, G and the equilibrium component y1 = (γk4−ζ2δ1ε

γπ2
)y2 are all positive.



VERTICALLY TRANSMITTED VECTOR-BORNE DISEASES 187

Using (3.8), (3.9) and (3.10) along with N = x1 + x2 + x3 + x4 (see Appendix
A for the details) we get

aπ21 + bπ1 + c = 0. (3.12)

The coefficients of this quadratic equation are given by

a = ρ(γ − δ1)D(Ek4 +DM),

b = ρ(γ − δ1)k1k2k3(Ek4 + 2DM)− φβδ0εAE and

c = (k1k2k3)
2ργk4(γ − δ1)(1 −

δ1ζ2ε

γk4
−R2

h),

(3.13)

where

M = γ(ε+ γ)− ζ2δ1ε and

E = φ(ψ + µ)(θ1d+ θ2(r + α+ µ)).
(3.14)

The conditions for the existence of endemic equilibrium (unique or multiple)
points of the system (2.1) are given as follows.

Theorem 3.2. The system given by (2.1) has
(i) a unique endemic equilibrium if c < 0 (i.e. if R0 > 1);
(ii) a unique endemic equilibrium if b < 0 and c = 0 or b2 − 4ac = 0;
(iii) has two endemic equilibria if c > 0, b < 0 and b2 − 4ac > 0;
(iv) no endemic equilibria otherwise.

Here, it should be clear that R0 > 1 implies that R2
h > 1− δ1ζ2ε

γk4
which then

implies, based on the definition of c (see equation (3.13)), that c < 0 which is
(i) of Theorem (3.2). Similarly, R0 < 1 implies that c > 0. Therefore, to have
two endemic equilibrium points for R0 < 1, we need b < 0 and b2 − 4ac > 0,
which means two positive equilibria are possible when (iii) of this theorem
holds. Furthermore, under case (iii) of Theorem (3.2), the quadratic (3.12)
has two positive roots π1 and π∗1. From these two roots, we get two positive
values for xi, i = 1, ..., 4 and also two positive values of π2 (see (3.10)). This
yields two positive values of yi, i = 1, 2, 3, thus, getting two endemic equilibria.
Furthermore, (i) of Theorem (3.2) implies that the system given by (2.1) has a
unique endemic equilibrium for R0 > 1. It is also clear that when b2 − 4ac < 0,
there is no endemic equilibrium and it is a common practice to get the critical
value Rc of the basic reproductive number R0 from b2 − 4ac = 0. This means,
when R0 < Rc, (2.1) has only the disease-free equilibrium. The global stability
of the disease-free equilibrium point when R0 < Rc is established in Section
(6).
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The foregoing approach uses a quadratic equation to establish conditions
for the existence of endemic equilibrium points. Unfortunately, these condi-
tions on a, b, c and b2 − 4ac are given in terms of complicated expressions of
model parameters, which makes it difficult to assess the important role that
key parameters play in the bifurcation dynamics. Among these parameters, the
disease-induce death rate, contact and disease transmission rates, and those de-
scribing mosquito and virus dynamics along with mosquito-to-human ratio are
worth mentioning. To look into the effects of some of these parameters, we use
the center manifold theorem to establish the existence of backward bifurcation
of endemic equilibrium points at R0 = 1. This is addressed in the following
section.

4. Backward bifurcation

In this section we use analytical and numerical techniques to assess the direc-
tions of bifurcations and related dynamics as key parameters change. Back-
ward bifurcation is a phenomenon where, two endemic equilibria, one stable
and another one unstable co-exist along with the disease-free equilibrium for
R0 < 1. The existence of a backward bifurcation indicates that reduction of the
epidemiology threshold, R0 below unity is simply not a sufficient condition for
disease control. Specifically, if the phenomenon of backward bifurcation emerges
in mosquito-borne diseases, a combined effort (such as, mosquito control and
strong personal protection) should be carried out to reduce the epidemiology
threshold below a critical value to insure disease elimination despite initial size.
In Section (6) we establish that once the epidemiology threshold R0 is reduced
below the critical value Rc, under some conditions, the disease could be elimi-
nated for any initial size.

We establish the existence of backward bifurcation at R0 = 1 using the
center manifold theorem (see [5] and [9]). Solving for β∗ from R0 = 1 and
evaluating the Jacobian matrix for system (2.1) at the disease-free equilibrium
E0 = (x∗1, 0, 0, 0, y

∗
1 , 0, 0) we get the singular matrix

J(β∗) =




Λ− µ Λ Λ Λ+ ψ 0 0 −βφ
0 −k1 0 0 0 0 βφ
0 d −k3 0 0 0 0
0 0 r k2 0 0 0

0 −φθ2y1
x1

−φθ1y1
x1

0 δ1 − γ δ1 δ1(1− ζ2)

0 φθ2y1
x1

φθ1y1
x1

0 0 −k4 δ1ζ2
0 0 0 0 0 ε −γ




,
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where for simplicity we use k1 = d+µ, k2 = ψ+µ, k3 = r+α+µ and k4 = ε+γ.
The right and left eigenvectors of J(β∗) corresponding to the zero eigenvalue
are w = (w1, w2, w3, ..., w7)

τ (τ is transpose) and V = (v1, v2, v3, v4, v5, v6, v7),
respectively, where

w1 =
−βφ
λ− µ

(
k1k2k3 − Λk2(k3 + d)− rd(Λ + ψ)

k1k2k3
)w7, w2 =

βφ

k1
w7,

w3 =
βφd

k1k3
w7, w4 =

βφrd

k1k2k3
w7, w5 = −γ(γ − δ1) + ε(δ1 + γ)

ε(γ − δ1)
w7,

w6 =
γ

ε
w7, w7 = w7 = 1,

and

v2 =
(γk4 − εδ1ζ2)

εβφ
v6, v3 =

φθ1y1
k3x1

v6, v7 =
k4
ε
v6,

v1 = v4 = v5 = 0, v6 = v6 = 1.

Clearly, w1 < 0 and w5 < 0. According to Theorem 4.1 in [9], the local bifur-
cation at R0 = 1 (equivalently, at β = β∗) is possible if a1 > 0 and b1 > 0,
where

a1 =

7∑

i,j,k=1

vkwiwj
∂2fk(0, 0)

∂xi∂xj
and b1 =

7∑

i,k=1

vkwi
∂2fk(0, 0)

∂xi∂ϕ
.

Note that each fk, k = 1, ..., 7 represents the right side of the kth equation in the
system (2.1). It should also be noted that z−E0, where z = (x1, x2, x3, x4, y1, y2,
y3) yields the first zero vector in fk(0, 0) at the disease-free equilibrium E0 and
also, ϕ = β − β∗ is zero at β∗ which is the scalar zero (the second component
in fk(0, 0)). To this end,

a1 = v2

7∑

i,j=1

wiwj
∂2f2(0, 0)

∂xixj
+ v3

7∑

i,j=1

wiwj
∂2f3(0, 0)

∂xixj

+ v6

7∑

i,j=1

wiwj
∂2f6(0, 0)

∂xixj
+ v7

7∑

i,j=1

wiwj
∂2f7(0, 0)

∂xixj
.

This yields

a1 = a11 − (a22 + a33), (4.1)

where
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a11 = −v6w1
φy∗1
(x∗1)

2
(w2θ2 + w3θ1) + v6w5

φ

x1
(w2θ2 + w3θ1)

a22 = v2w7
βφ

x∗1
(w2 + w3 + w4)

a33 = v6
φy∗1
(x∗1)

2
[2(w2

2θ2 + w2
3θ1) +w4(w2θ2 + w3θ1) + w2w3(θ1 + θ2)]

(4.2)

and

b1 =

7∑

j,k=1

vkwj
∂2fk(0, 0)

∂xj∂ϕ
= v2w7φ.

Clearly, b1 > 0, however, a1 > 0 if and only if

a11 > a22 + a33. (4.3)

Thus, the following result is established based on [9].

Theorem 4.1. The model given by system (2.1) exhibits a backward
bifurcation at the critical point R0 = 1 when inequality (4.3) holds.

Rewriting a1, we get

a1 = v6
φy∗1
(x∗1)

2
[−w1(w2θ2 + w3θ1)− 2(w2

2θ2 + w2
3θ1)− w4(w2θ2 + w3θ1)

− w2w3(θ1 + θ2)] + v6
φ

x∗1
w5(w2θ2 + w3θ1)− v2

βφ

x∗1
(w2 + w3 + w4).

(4.4)

The term with coefficient v6
φy∗

1

(x∗

1
)2

in (4.4) reduces to

w2
2v6

φy∗1
(x∗1)

2
[
(k1k2k3 − Λk2(k3 + d)− rd(Λ + ψ))(k3θ2 + dθ1)

(µ− Λ)k2k23

− rd

k2k23
(k3θ2 + dθ1)− 2

(k23θ2 + d2θ1)

k23
− d(θ1 + θ2)

k3
]

= w2
2v6

φy∗1
(x∗1)

2
(O1 −O2),

(4.5)

where

O1 = [dα + (d+ k2)(µ − Λ)](k3θ2 + dθ1) and

O2 = [2(k23θ2 + d2θ1) + k3d(θ1 + θ2)](µ − Λ).
(4.6)
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The term in (4.5) is positive if and only if O1 > O2. Possible factors for this
could be increased disease-induced death rate, α and host density (for example,
increased Λ and reduced µ, while α is increased). Then,

a1 = w2
2v6

φy∗1
(x∗1)

2
(O1 −O2)− v6

φw2

x1
(
γ

ε
+
γ + δ1
γ − δ1

)(θ2 +
dθ1
k3

)

− w2[
γ(γ + ε)− δ1ζ2ε

εx1
](1 +

d

k3
+

rd

k2k3
)

=
w2
2φy

∗
1

(x∗1)
2
[v6(O1 −O2)−

x∗1k1
y∗1βφ

[v6(
γ

ε
+
γ + δ1
γ − δ1

)(θ2 +
dθ1
k3

)

+ (
γ(γ + ε)− δ1ζ2ε

φε
)(1 +

d

k3
+

rd

k2k3
)]].

(4.7)

Increased mosquito density, specifically, high mosquito-to-human ratio along
with increased effective contact rate, φ, could make a1 > 0. Other contributers
to this result include increased ζ2, ε and decreased γ. Essentially, all parame-
ters focusing on mosquito dynamics are vital to make the threshold a1 positive.
Specifically, increased ζ2 indicates higher intensity of vertical transmission of
the disease from female mosquito to eggs. Furthermore, incubation rate, ε,
of the disease causing pathogen in mosquitoes, among many factors, could be
influenced by temperature. For instance, the extrinsic incubation period of a
dengue virus strain in Aedes aegypti mosquito species reduces when the tem-
perature increases (see [13, 41]). Additionally, to contain vertically transmitted
mosquito-borne diseases, control efforts should focus on mosquito reduction
which otherwise could be a challenge when combined with increased ζ2, ε and
γ along with φ.

Numerical simulations based on dengue virus show the effect of increasing
the extrinsic incubation rate from ε = 1

12 to ε = 1
8 on the bifurcation while the

mosquito death rate is relatively low, γ = 1/15. This is depicted in Figure 1,
where all other parameters are kept the same, except the extrinsic incubation
rate.

However, if mosquito life span is reduced (γ = 1/12), the bifurcating curve
shifts to the right even for ε = 1/8 which is a high incubation rate of the virus
in mosquito (see Figure 2). The effects of a rising temperature and abundant
precipitation on the dynamics of the mosquito and the virus population make
significant contributions which could challenge disease control efforts.

Likewise, numerical simulations of the model (2.1) (data based on dengue
virus) highlight the effects of some parameters on the direction of the bifurcation
and disease prevalence. One of these parameters is the disease-induced death
rate, α. A backward bifurcation where two stable equilibria co-exist (endemic
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Figure 1: Bifurcation curves reflecting the effects of changes in ex-
trinsic incubation rate and mosquito control: Unstable branch (red),
stable branch (blue), green (extinction); ε = 1/8 (continuous curve)
and ε = 1/12 (dashed curve). Other parameters are γ = 1/15,
β = 0.2, ζ2 = 0.67, θ1 = 0.0082, θ2 = 0.0289, µ = 1.01/(70×365),Λ =
0.379/(70 × 365), ρ = 205, δ0 = 1050, r = 1/7, δ1 = 0.0399, d =
1/10, ψ = 0.0014, ζ1 = 0, α = 0.0238, φ = 3. The bifurcation is back-
ward for high extrinsic incubation rate, ε but the direction changes
to forward when ε is decreased.

and the disease-free) as shown in Figure 4 when the value of α changes from
α = 0.0067 to α = 0.0085. This is in line with results given in the literature
(see for example, in malaria [14] where the disease induced death rate changes
from 3.419 × 10−5 to 3.454 × 10−4 for the direction of bifurcation to change),
where backward bifurcation is connected to the severity of the disease, and in
our model, this severity is measured by the values of α.
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Figure 2: Bifurcation curves reflecting the importance of mosquito
control to reduce the effects of extrinsic incubation rate : ε = 1/8
(continuous curve) and ε = 1/10 (dashed curve). Other parame-
ters are γ = 1/12, β = 0.2, ζ2 = 0.67, θ1 = 0.0082, θ2 = 0.0289,
µ = 1.01/(70 × 365),Λ = 0.379/(70 × 365), ρ = 205, δ0 = 1050, r =
1/7, δ1 = 0.0399, d = 1/10, ψ = 0.0014, ζ1 = 0, α = 0.0238, φ = 3.
With increased mosquito death rate, the bifurcation remains forward
for increased ε as well.

5. The effect of Weather Changes on Epidemic Levels

Increased temperature and precipitation are know to facilitate optimal condi-
tions to enhance mosquito breading and survival rate which increase mosquito
density. This is due to the fact that rise in temperature and enough precipita-
tion increases breading ground, survival rate and shorten intrinsic incubation
period. Moreover, a rise in temperature also increases mosquito biting rate and
the rate by which the disease causing pathogen completes its cycle (extrinsic
incubation rate). This together with vertical transmission of the disease in the
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(b) Effect of disease transmission from vec-

tor to humans.

Figure 3: Time plots of infectious population sizes as the extrinsic
incubation rate increases (a) and as the disease transmission rate
from mosquito to human increases (b). In each plot, γ = 1/17 and
all other parameters, except β = 0.2 (in a) and ε = 1/10 (in b), are
as in Figure (2).

vector could facilitate conditions which contribute to emergence and reemer-
gence of the disease as well as the rise in the epidemic level. It should be clear
that other factors such as personal protections could contribute to disease con-
trol as well (see Figure 6), but once again our primary focus is on mosquito
control reacting to conditions that increase mosquito density and virus replica-
tions in some mosquito species.

In this section, simulation results, are presented to illustrate the effects of
weather conditions on the epidemic levels of the disease where parameters are
estimated based on a dengue virus (see Table 2 in Appendix B). The simulation
results show that higher extrinsic incubation rate in mosquitoes could increase
the disease epidemic. Essentially, very high temperature raises the extrinsic
incubation rate of the disease causing pathogen in some mosquito species. For
example, a strain of dengue virus in Aedes aegypti accounts for high epidemic
level which may slowly decay in time, or remain endemic. The elevated epi-
demic level due to increase in the extrinsic incubation rate could be reduced
through effective mosquito control as it is given in Figure 5 for three different
values ε = 1/12, 1/10, 1/8. Furthermore, as the simulation results in Figure 5
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Figure 4: Bifurcation for two different values of α : α = 0.0085
and α = 0.0067. Unstable branch (red), stable branch (blue), green
(extinction). Infectious vectors, y3 and Infectious hosts, x3 plotted
against R0, and other parameters are: θ1 = 0.6383, θ2 = 0.0063, µ =
1/(70×365),Λ = 0.379/(70×365), ρ = 200, γ = 1/17, δ0 = 1050, r =
1/7, δ1 = 0.0399, β = 0.7873, φ = 4, d = 1/8, ε = 1/10, ψ =
0.0014, ζ2 = 0.67, ζ1 = 0.

show, when mosquito survival period is reduced from 17 to 13 days (this means
increased death rate from γ = 1/17 to γ = 1/13), even if the extrinsic incuba-
tion rate, ε, is increased, the epidemic could still be reduced. Indeed, a vector’s
survival through the extrinsic incubation period to become infectious makes a
big difference in the epidemics level. Therefore, if there is any mechanism to
reduce the survival period of mosquitoes, then the disease transmission cycle
could be cut short, consequently, diminishing the epidemics. This could be
among proactive intervention strategies following effective weather predictions.

Insecticide-based mosquito control products which focus on larva and young
adults could contribute to insecticide resistance in mosquitoes. However, de-



196 K.W. Blayneh

0 100 200 300 400
0

100

200

300

time

In
fe

c
ti
o
u
s
 H

u
m

a
n
s

γ = 1/13

 

 

0 100 200 300 400
0

20

40

60

80

100

time

In
fe

c
ti
o
u
s
 m

o
s
q
u
it
o

γ = 1/13

 

 

0 100 200 300 400 500
0

200

400

600

800

time

In
fe

c
ti
o
u
s
 m

o
s
q
u
it
o

γ =1/17

 

 

0 100 200 300 400 500
0

500

1000

time

In
fe

c
ti
o
u
s
 H

u
m

a
n
s

γ 1/17

 

 

ε=1/8

ε=1/10

 ε=1/12

ε =1/8

ε=1/10

ε =1/12

ε =1/8

ε=1/10

ε =1/12

ε =1/8

ε=1/10

ε =1/12

Figure 5: Reaction to change in ε and the effects of mosquito con-
trol. Population size of infectious mosquito for ε = 1/8, 1/10, 1/12.
Note that γ = 1/17 in the upper two windows, but it is increased
to γ = 1/13 in the lower two windows. Other parameters are:
θ1 = 0.0083, θ2 = 0.00513, µ = 1/(70 × 365),Λ = 0.375/(70 ×
365), ρ = 205, δ0 = 1050, β = 0.2, r = 1/7, δ1 = 0.0399, d =
1/10, ψ = 0.00233, ζ2 = 0.0087, ζ1 = 0, α = 0.0001, φ = 2. Initial
data: x0 = [60; 0; 0; 5; 5000; 10; 20]. The epidemic level increases for
higher values of ε. Initially, there are no exposed and infectious hosts
in the environment.

spite these side effects, when complex mosquito and virus dynamics challenge
efforts to mitigate disease burden, insecticide application could be among pre-
ferred means to combat vertically transmitted vector-borne diseases (see [4]
and references therein). This is especially the case when the problem covers a
large area. More attention should be paid to mosquito control and this con-
trol should also react to weather conditions that could increase intrinsic and
extrinsic incubation rates.
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Figure 6: Reaction to change in disease transmission. Population
size of infectious Mosquito (upper window) and Hosts (lower win-
dow). Parameters (other than β): θ1 = 0.0083, θ2 = 0.00513, µ =
1/(70×365),Λ = 0.375/(70×365), ρ = 205, γ = 1/17, δ0 = 1050, r =
1/7, δ1 = 1/20, d = 1/10, ε = 1/10, ψ = 0.00233, ζ2 = 0.0087, ζ1 =
0, α = 0.0001, φ = 2. Initial data: x0 = [60; 0; 0; 5; 5000; 10; 20].

High rate of vertical transmission in mosquitoes could increase disease epi-
demics and its duration (the period that the epidemic lasts, see Figure 7). One
reason for this is that it keeps the transmission loop within the mosquito popu-
lation. This is sustained through mosquito-to-egg transmission which produces
some infectious adults even if the weather is not favorable for mosquito den-
sity to increase. This could also cause the mosquito population to serve as a
reservoir of the disease, which makes killing adult mosquitoes alone ineffective
as disease control.

The fight against a vertically transmitted (in mosquitoes) vector-borne dis-
ease could undoubtedly face more challenges when the vertical transmission also
takes place in the host population, it is worse if vector-host contact is not ef-
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Figure 7: The total number of infectious host and vector react-
ing to increased vertical transmission in the vector. Note that
ζ2 = 0.56 (dashed line) and ζ2 = 0.0087 (continuous line). The
disease prevalence is increased reacting to increase in ζ2. Initial
data: x0 = [60; 0; 0; 5; 5000; 10; 20]. Parameters (other than ζ2): θ1 =
0.0083, θ2 = 0.00513, µ = 1/(70 × 365),Λ = 0.375/(70 × 365), ρ =
205, γ = 1/17, δ0 = 1050, r = 1/7, δ1 = 1/20, β = 0.15, d = 1/10, ε =
1/8, ψ = 0.00233, ζ1 = 0, α = 0.0001, φ = 2.

fectively controlled. As in the case of dengue fever, vertical transmission in the
host population could also cause the epidemic in each population to increase.
Simulation results on these effects are given in Figure 8 where φ = 2 in each
case, and in Figure 9 where φ = 3 and ζ1 = 0.56; φ = 2 and ζ2 = 0.0087.

6. Global Stability of the Disease-Free Equilibrium

In this section we establish the global stability of the disease-free equilibrium
when the epidemiology threshold is reduced below a critical value and for ζ1 =
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Figure 8: The total number of infectious host and vector reacting
to increased vertical transmission in the host. Note that ζ1 = 0.56
(dashed line) and ζ1 = 0.0087 (continuous line). The reaction of
the epidemic level to increase in ζ1 when the contact rate is the
same. Initial data: x0 = [20; 40; 350; 40; 2000; 40; 10]. Parameters
(other than ζ1): θ1 = 0.0283, θ2 = 0.00513, µ = 1/(70 × 365),Λ =
0.375/(70 × 365), ρ = 205, γ = 1/17, δ0 = 1050, r = 1/7, δ1 =
1/20, β = 0.15, d = 1/10, ε = 1/8, ψ = 0.00233, α = 0.0001, φ = 2.

ζ2 = 0, which means, without vertical transmission in both populations. Clearly
the set given by (2.4) is forward invariant and attractor. Thus, our focus is
primarily to establish the global stability of the disease-free equilibrium in the
forward invariant set Ω. In line with the previous sections, we will use R0 given
by (3.5) where ζ1 = 0 = ζ2. When the bifurcation at R0 = 1 is forward, then
from Theorem (3.2), the system (2.1) has no endemic equilibrium for R0 < 1.
In the presence of a backward bifurcation, the critical value of R0, denoted by
Rc and 0 < Rc < 1 is associated with the turning point of the bifurcating curve.
Specifically, when ζ2 = ζ1 = 0, using (3.13) and b2 − 4ac = 0, it is possible to
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Figure 9: The total number of infectious host and vector react-
ing to increased vertical transmission in the host when the con-
tact rate is also increased. Note that ζ1 = 0.56, φ = 3 (dashed
line) and ζ1 = 0.0087, φ = 2 (continuous line). Initial data:
x0 = [20; 40; 350; 40; 2000; 40; 10]. Parameters (other than ζ1 and
φ): θ1 = 0.0283, θ2 = 0.00513, µ = 1/(70 × 365),Λ = 0.375/(70 ×
365), ρ = 205, γ = 1/17, δ0 = 1050, r = 1/7, δ1 = 1/20, β = 0.15, d =
1/10, ε = 1/8, ψ = 0.00233, α = 0.0001.

see that

Rc =

√
1− b2

4a(k1k2k3)2ργk4(γ − δ1)
. (6.1)

For R0 < Rc, the model given by (2.1) has no endemic equilibrium. Here are
some examples of critical values from simulations of the system (2.1): Rc =
0.691 for ε = 1/8, γ = 1/17, and then it shifts to Rc = 0.897 for ε = 1/12, γ =
1/15 where in both cases we keep β = 0.35, φ = 5. Then it shifts further to
the right Rc = 0.9857 when β and φ are reduced to β = 0.2 and φ = 3 while
ε = 1/8, γ = 1/15. In each of these examples, the values of the other parameters
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are as in Figure 1.

Theorem 6.1. The Disease-free equilibrium E0 which is given by (3.1)
is globally asymptotically stable in Ω, the set defined by (2.4) when R0 <

min{Rc,
√
∆}, where Rc is given by (6.1) and ∆ = (µ−Λ)

ρ
.

Proof. Consider a Lyapunov function defined by

V = A1x2 +A2x3 +A3y2 +A4y3, (6.2)

where A1 = 1, A2 = A3φθ1δ0
k3(γ−δ1)

, A3 = A4ε
k4
, A4 = βφ

γ
and xi, i = 2, 3 and yi, i = 2, 3

are components of a solution of (2.1) with initial value in Ω, the set given by
(2.4).

Differentiating V with respect to t and using the right side of equation (2.1)
we get

V̇ = A1ẋ2 +A2ẋ3 +A3ẏ2 +A4ẏ3

= x2(A2d−A1k1 +A3φθ2
y1
N

) + x3(A3φθ1
y1
N

−A2k3)

+ y2(A4ε−A3k4) + y3(A1φβ
x1
N

−A4γ)

≤ x2(A2d−A1k1 +A3φθ2
δ0

γ − δ1
) + x3(A3φθ1

δ0
γ − δ1

−A2k3)

+ y2(A4ε−A3k4) + y3(A1φβ −A4γ)

= x2k1[R2
h

ρ

µ− Λ
− 1]

= x2k1
ρ

µ− Λ
[R2

h −∆].

(6.3)

Then R2
h < ∆ implies V̇ < 0. Clearly, the coefficients of x2, x3, y2 and y3 are

non positive which implies that V̇ = 0 if and only if xi = 0, i = 2, 3, 4 and
yi = 0, i = 2, 3. Thus, V̇ = 0 if and only if ẋi = 0, i = 2, 3, 4 and ẏi = 0, i = 2, 3.
Furthermore, if R0 < Rc, the disease-free equilibrium E0 = (x∗1, 0, 0, 0, y

∗
1 , 0, 0)

is the only equilibrium of the vector field (2.1) in Ω. It then follows that the set
{(x1, x2, x3, x4, y1, y2, y3) ∈ Ω : V̇ = 0} has G = {(x∗1, 0, 0, 0, y∗1 , 0, 0)} as a maxi-
mal invariant subset. Therefore, by Lyapunov-LaSalle theorem (Theorem 6.2 in
[40]), for all solutions that start in Ω, the components (x2, x3, x4, y2, y3) asymp-
totically approach (0, 0, 0, 0, 0). This clearly implies that x1 and y1 asymptoti-
cally approach ρ

µ−Λ and δ0
γ−δ1

, respectively. Therefore, E0 is globally asymptot-
ically stable in Ω.
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7. Discussion and Conclusions

We wrap up our study by making some concluding remarks about our findings.
Analytical and numerical techniques are implemented to assess the influence of
climate changes on the dynamics of vertically transmitted diseases. Specifically,
the numerical results highlight changes in virus (due to increased incubation
rate) and mosquito dynamics have effects on disease epidemic and could also
cause the disease to be endemic. While mosquito and virus dynamics are not the
only parameters reacting to climate changes, our numerical results show that
the combination of these two parameters along with lack of personal protection
and effective mosquito control could elevate the epidemic level which could also
last over a longer period of time.

Part of our analytical results include derivation of the epidemiology thresh-
old, R0, the existence of a backward bifurcation and its connections to the
disease-induced death rate, disease transmission and mosquito-to-human ratio.
Other analytical results include the global stability of the disease-free equilib-
rium point when the epidemiology threshold is reduced below a critical value.
Consequently, in the presence of a backward bifurcation, the reduction of the
epidemiology threshold below one is not enough to eradicate the disease. This
threshold should be reduced below a critical value, and the horizontal transmis-
sion threshold should also be kept below a critical value to accomplish the goal
of eradication. This follows from the global stability of the disease-free equilib-
rium point, Theorem (6.1). Therefore, one of the most important measures to
contain a vector-borne disease is to focus on parameters that reduce horizontal
transmissions.

Numerical simulation results show the effect of increased extrinsic incuba-
tion rate on the bifurcation curves for different values of mosquito death rates.
As it is depicted in Figure 1, when the mosquito death rate is γ = 1/15, a
backward bifurcation curve emerges for ε = 1/8, and shifts to the right when
the value of ε is reduced to 1/12. Furthermore, the equilibrium levels on the
bifurcation curve corresponding to ε = 1/12 are smaller (see for example, the
time plot of infectious vector and host populations for ε = 1/8 and 1/12 in
Figure 3(a)). The endemic equilibrium level is also elevated due to changes in
β from β = 0.27 to β = 0.35 in Figure 3(b). However, when mosquito death
rate is increased to γ = 1/10, even for ε = 1/8, the backward bifurcation disap-
pears (see Figure 2). The implication of these results is that reducing the life
expectancy of mosquitoes could make a big difference in controlling disease bur-
den. The disease-induced death rate of hosts is also another parameter which
could influence the direction of bifurcation as it is depicted in Figure 4.
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In part, due to transmission cycle and the short period it takes for the dis-
ease causing pathogen to complete its life cycle (when temperature increases)
in female mosquitoes, increased extrinsic incubation period raises the disease
prevalence in both populations. The combinations of these factors could en-
hance the challenges to fight mosquito-borne diseases such as dengue, RVF and
WNV to mention some. On the other hand, if mosquito control (such as increas-
ing γ) is in phase with weather conditions that raise the extrinsic and intrinsic
incubation rates, then the epidemic level could be significantly reduced (com-
pare the upper two windows, γ = 1/17 with the lower two windows, γ = 1/13
in Figure 5). Additionally, we see that the prevalence of vector-borne diseases
reacts to a number of parameters, such as disease transmission rate, β, as it is
given in Figure 6, where transmission control reduces the epidemic level and its
duration. Furthermore, as it can be seen in Figure 7 the rate of vertical trans-
mission in the vector population has greater influence in raising the epidemic
level. However, the results in Figures 8 and 9 highlight that increased contact
rate magnifies the impact of vertical transmission on the epidemic level and its
durations. Although the data we used is based on a dengue virus, our results
reveal that screening hosts and taking necessary control measures could prevent
the spread of vertically transmitted diseases to more geographical locations.

When vertical transmission is present in mosquitoes, controlling adult mos-
quitoes alone may not reduce disease burden, since infected eggs hatch to be
infectious adults. Therefore, following predictions of favorable weather changes,
a proactive mosquito control measure should include larvacide. Our results
provide some useful insights into appropriate measures that should be taken
to mitigate the effects of the extrinsic incubation periods in vertically trans-
mitted vector-borne diseases. Furthermore, a rise in extrinsic incubation rate
elevates the epidemic level of the disease. Specifically, the results highlight the
importance of accurate climate predictions which cause the extrinsic incubation
rate of the disease causing pathogen in mosquitoes to increase. While mosquito
control and personal protection are among the most effective measures to fight
against vector-borne diseases, understanding the virus dynamics could also play
a key role in this fight. Clearly, simulation results depend on the choice of pa-
rameters, thus more results and conclusions are possible. It is our hope that
the analytical and numerical results of this study lay a groundwork to further
assess the complex dynamics of vertically transmitted vector-borne diseases and
the effects of extreme weather conditions.
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8. Appendix A

We used the constants A,B, S,E which are given by (3.11) and (3.14) in Section
3.1.

The components of the endemic equilibrium E1 = (x1, x2, x3, x4,y1, y2, y3)
are given by (3.8)-(3.9) from which we get

N = x1+x2+x3+x4 =
k1x2
π1

+x2+
dx2
k3

+
drx2
k2k3

= (
k1
π1

+1+
d

k3
+

dr

k2k3
)x2 (8.1)

=
ρ(k1k2k3 + π1D)

π1A+B
. (8.2)

From (3.8), (3.9) and (3.10) we get

π1 =
φβy3
N

=
φβ(B +Aπ1)

ρ(k1k2k3 + π1D)

kδ0π2
(γ − δ1)(k4π2 +M)

and (8.3)

π2 =
Eπ1

k1k2k3 +Dπ1
. (8.4)

Using (8.4), we have π2

k4π2+M(ζ) =
Eπ1

k1k2k3M+π1(Ek4+DM) . Thus, (8.3) yields

π1 =
φβ(B +Aπ1)

ρ(k1k2k3 +Dπ1)

δ0εEπ1
(γ − δ1)(k1k2k3M+ π1(Ek4 +DM))

which reduces to a quadratic equation in π1

π21a+ π1b+ c = 0, (8.5)

with coefficients given by (3.13).
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9. Appendix B

Par. Range Ref. Par. Range

γ [1/17, 1/10] [11] θ2 (0, θ1)

µ [ 1
70(356) ,

1
45(356) ] estimate θ1 [0, 1)

φ ≥ 1 variable α (0, 0.001)

ε [1/14, 1/7] [13] ψ [0, 1)

r [0, 1/7] [1] β (0, 1)

ζ2 [0, 1) estimate ζ1 [0, 1)

d [1/14, 1/3] [10] δ1 [0, 1)

δ0 [700, 10, 000] [5]

Λ (0, µ)

Table 2: Parameter estimation for dengue fever. All variables other
than γ, ε, r and d are estimated in the given range of values. The
values of parameters listed in column 4 are estimates. Rate is per
day.
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