STABILITY ANALYSIS OF A VIRAL IMMUNE RESPONSE
MODEL INVOLVING TWO TIME DELAYS

Abstract

We study the qualitative behaviour of the homogeneous in space solution of a two delays differential equation arising from an immune response mathematical model. We use the monotone dynamical systems framework. First, existence and smoothness of solutions are investigated. Then, sufficient conditions of the free-infection and the endemic equilibriums asymptotic stability are derived for different types of the function representing the efficiency of immune response-mediated virus elimination. Then, we use clinical data to calibrate the differential equation and illustrate the analytical results by numerical simulation with the obtained parameters values.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 5
Year: 2023

DOI: 10.12732/ijam.v36i5.10

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] N. Bessonov, G. Bocharov, T.M. Touaoula, S. Trofimchuk and V. Volpert, Delay reaction-diffusion equation for infection dynamics, Discrete and Continuous Dynamical Systems, Ser. B, 24, No 5 (2019), 2073-2091.
  2. [2] G. Bocharov, A. Meyerhans, N. Bossonov, S. Trofimchuk and V. Volpert, Modelling the dynamics of virus infection and immune response in space and time, International Journal of Parallel, Emergent and Distributed Systems (2017), 1-15.
  3. [3] G. Bocharov, Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses. J. Theor. Biol., 192 (1998), 283-308.
  4. [4] A. Bouchnita, G. Bocharov, A. Meyerhans and V. Volpert, Hybrid approach to model the spatial regulation of T cell responses, BMC Immunology, 18 (Suppl. 1), No 29 (2017), 11-22.
  5. [5] F. Boudchich, J.E. Karkri and R. Aboulaich, Stability analysis of a delay differential equation describing the antiviral immune response, International Journal of Dynamical Systems and Differential Equations, 13, No 1 (2023), 76-89.
  6. [6] J. El Karkri, F. Boudchich, V. Volpert and R. Aboulaich, Stability analysis of a delayed immune response model to viral infection, Differential Equations and Dynamical Systems (2022), 1–21.
  7. [7] J. El Karkri and K. Niri, Stability analysis of a delayed SIS epidemiological model. Int. J.Dynamical Systems and Differential Equations, 6, No 2 (2016), 173-185.
  8. [8] J. El Karkri and K. Niri, Global asymptotic stability of an SIS epidemic model with variable population size and a delay, Int. J. Dynamical Systems and Differential Equations, 7, No 4 (2017), 289-300.
  9. [9] Z. Habli, S. Saleh, H. Zaraket and ML. Khraiche, COVID-19 in-vitro diagnostics: State-of-the-Art and challenges for Rapid, Scalable, and HighAccuracy Screening. Front. Bioeng. Biotechnol., 8 (2021), 605702; doi: 10.3389/fbioe.2020.605702.
  10. [10] J.K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer Verlag, Berlin (1993).
  11. [11] M. Hirsch, Systems of differential equations which are competitive or cooperative 1: Limit sets. SIAM Journal on Applied Mathematics, 13 (1982), 167-179.
  12. [12] M. Hirsch, Systems of differential equations which are competitive or cooperative 1: limit sets, SIAM J. Appl. Math., 13 (1982), 167-179.
  13. [13] M. Hirsch, Systems of differential equations which are competitive or cooperative II: convergence almost everywhere, SIAM J. Math. Anal., 16 (1985), 423-439.
  14. [14] M. Hirsch, Stability and convergence in strongly monotone dynamical systems, Journal fur die Reine und Angewandte Mathematik, 383 (1988), 1-53.
  15. [15] A.L. Jenner, R.A. Aogo, S. Alfonso, V. Crowe, X. Deng, A.P. Smith, et al., COVID-19 virtual patient cohort suggests immune mechanisms driving disease outcomes, PLoS Pathog, 17, No 7 (2021), e1009753; doi:10.1371/journal. ppat.1009753.
  16. [16] E. Kamke, Zur Theorie der Systeme gewöhnlicher Differentialgleichungen, II (German), Acta Mathematica, 58, No 1 (1932), 57-85.
  17. [17] M. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen (1964).
  18. [18] M. Krasnoselskii, The Operator of Translation Along Trajectories of Differential Equations, Transl. Math. Monographs, Providence, 19 (1968).
  19. [19] F.X. Lescure, L. Bouadma, D. Nguyen, M. Parisey, P.H. Wicky, S. Behillil, Y. Yazdanpanah, et al., Clinical and virological data of the first cases of COVID-19 in Europe: A case series, The Lancet Infectious Diseases, 20, No 6 (2020), 697-706.
  20. [20] G. Marchuk, Mathematical Modelling of Immune Response in Infectious Diseases, Kluwer Academic Publishers (1997).
  21. [21] R.H. Martin and H.L. Smith, Abstract functional differential equations and reaction-diffusion syastems, Trans. of the Amer. Math. Soc., 21, No 1 (1990).
  22. [22] R.H. Martin and H.L. Smith, Reaction-diffusion systems with time delays: Monotonicity, invariance and convergence, Journal fur die Reine und Angewandte Mathematik, 413 (1991), 1-35.
  23. [23] H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order preserving systems, J. of the Fac. Sci., the Univ.of Tokyo, 30 (1984), 645-673.
  24. [24] A.K. McElroy, R.S. Akondy, D.R. Mcllwain, H. Chen, Z. Bjornson-Hooper, N. Mukherjee,..., and C.F. Spiropoulou, Immunologic timeline of Ebola virus disease and recovery in humans, JCI Insight, 5, No 10 (2020).
  25. [25] C. Melenotte, et al., Immune responses during COVID-19 infection, Oncoimmunology, 9, No 1 (2020), 1807836.
  26. [26] M. Muller, Uber das Fundamental theorem in der Theorie der gewohnlichen Differentialgleichungen (German), Mathematische Zeitschrift, 26, No 1 (1927), 619-645.
  27. [27] L. Musey, et al., Cytotoxic T cell responses, viral load and disease progression in early HIV-type 1 infection, N. Engl. J. Med, 337, (1997), 1267-1274.
  28. [28] M.A. Nowak and C.R.M. Bangham, Population dynamics of immune response to persitent viruses. Seinece, New Ser., 272 (1996), 74-79.