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1. Introduction

The dynamics of viral infection is a question of public health and medicine which
attracts researchers interest particularly epidemiologists and applied mathe-
maticians. It depends on several factors including the nature of the infec-
tion, its severity and mainly the associated response of the immune system.
Thus several works have been devoted to this issu. They are based on differ-
ent methodologies, notabley, ordinary differential equations, partial differential
equations, stochatic equations, hybrid modelling or novel methodologies for
complex problems solving. They often describe the interaction betwen the hole
population of virus and different immune system’s cells populations. See for
instance [20, 28, 4, 30].

In this work we are interested in the following reaction diffusion partial
differential equation:











∂v

∂t
= D1.

∂2v

∂x2
+K.v. (1− v)− σ.v.C ,

∂C

∂t
= D2.

∂2C

∂x2
+ (C0 + Φ (vτ ) .C) . (1− C)− ψ (vω) .C ,

(1)

introduced by Bocharov et all in [2] as a model of viral infection spreading in
tissues with delayed immune response (See Figure 1 page 4 [2]). Where v is
the local virus concentration and C is Lymphocites cells concentration. The
variable x describes the spatial position of the immune cell and the virus in
the tissue while t is the temporal variable. We use the notations vω (x, t) =

v (x, t− ω) and vτ (x, t) = v (x, t− τ), for all (x, t) ∈ (R+)
2
. The terms D1.

∂2v
∂x2

and D2.
∂2C
∂x2

represent the spatial diffusion of viruses and immune cells. D1

and D2 are the viruses and immune cells diffusion coefficients respectively. The
positive number K is the virus replication rate assumed to be constant. Virus
reproduction is described by the logistic term K.v.(1−v), and its elimination by
the immune cells is given by the term σ.v.C. The term (C0 + Φ (vτ ) .C) . (1− C)
illustrates the rate of appearance of immune cells in the peripheral organs after
migration from the bone marrow and thymus and proliferating there. The delay
τ corresponds to the delay in the immunological reaction due to the duration
of proliferation. The term ψ (vω) .C represents the death of the immune cells
and µ is the time needed for programming of activated CTLs to apoptosis.
The strength of the antiviral immune response given by the terms Φ (vτ ) .C
and ψ (vω) .C, depends on virus concentration at time t − τ and t − ω. The
time delay τ can be of the order of several days. It is determined by the
duration of proliferation and maturation of immune cells and ω is the time
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needed for immune cells apoptosis. For more details we refer to [2, 3]. The
modelling of such dynamics can include a restricted class of dynamical systems,
enjoying a comparison principle with respect to a closed order relation on the
state space, called monotone, order-preserving or increasing sysytems. To study
the qualitative behaviour of solutions of such systems, many approaches and
theories can be applied but the more appropriate one is monotone dynamical
systems stability theory introduced by Muller [26] and Kamke [16]. Then widely
used by variours authors like Hirsh, Matano or H.L Smith (for more details we
refer to [12, 23, 34, 35]). El Karkri and Niri [7, 8] employed this aproach to
inestigate stability of endemic equilibrium of an epidemiological model.

In the present paper, we genralize the work presented in [6] where authors
considered the same model but with a single time delay and they establish
sufficient conditions of asymptotic and global stability for the equilibria. We
shall prove that under suitable conditions on model’s parameters the equilib-
rium are asymptotically stable. We show that under suitable conditions we get
the asymptotique stability of the infection-free equilibrium (v∗ = 0). We also
give different conditions involving the strength of the antiviral immune response
terms and the time delays τ and µ, to get asymptotic stability of the infection
equilibrium (v∗ 6= 0). This shows how the asymptotic behaviour of our model
is closely affected by the time delays and antiviral immune response efficiency.

The contents of this paper are arranged as follows. In Section 2, the model
is presented and reduced to get the main functional differential equation. Then
some preliminary results concerning existence, regularity of solutions and basic
elements of monotone dynamical systems stability theory are recalled. Then
in Section 3 asymptotic stability criterion are inverstigated. In Section 4 in
order to compare analytical and numerical stability conditions we apply the
theoretical result to clinical data of Ebola and Covid-SARS cases. The paper
ends with a short conclusion.

2. The model and the delay differential equation

In this section, we recall main properties, hypothesis and preliminaries of the
dynamical system describing the present immunological model and given by
The equation (1).

In the following, we assume that v and C are temporal functions. Conse-
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quently, The equation (1) becomes



















∂v

∂t
= K.v (t) . (1− v (t))− σ.v (t) .C (t) ,

∂C

∂t
= (C0 + Φ (v (t− τ)) .C (t)) . (1− C (t))− ψ (v (t− ω)) .C (t) .

(2)

According to [2], we can assume that ψ (v) = R.ψ0 (v) and φ (v) = R.φ0 (v)
with R large closed to +∞. After dividing the second equation in (2) by R, we
get

1
R
.∂C
∂t

=
(

C0

R
+ Φ0 (vτ ) .C

)

. (1− C)− ψ0 (vω) .C .

For R −→ +∞, we have 0 = 0 + Φ0 (vτ ) .C. (1− C)− ψ0 (vω) .C.

Thus Φ0 (vτ ) . (1− C)− ψ0 (vω) = 0, i.e. C = 1− ψ0(vω)
Φ0(vτ )

= g (vω, vτ ).

The second equation in (2) is, then, reduced to

dv

dt
(t) = K.v (t) . (1− v (t))− σ.v (t) .g (v (t− τ) , v (t− ω)) , (3)

with g (s, l) = 1− ψ0(l)
Φ0(s)

= 1− R.ψ0(l)
R.Φ0(s)

= 1− ψ(l)
Φ(s) .

The differential equation (3) can be written as

dv

dt
(t) = H (vt) , (4)

with
H (ϕ) = K.ϕ (0) . (1− ϕ (0))− σ.ϕ (0) .g (ϕ (−τ) , ϕ (−ω)) ,

for all ϕ ∈ C0 ([−max (τ, ω) , 0] ,R).
In all this work, the function g is assumed to be of class C1 on a subset

(]a, b[)2 of R2
+ such that [0, 1] ⊂]a, b[, with g (x, y) > 0 for all (x, y) ∈]a, b[2. We

denote M = max (τ, ω) for the rest of the paper.

Theorem 1. (Existence, continuity and smoothness of solutions) For all
ϕ ∈ C([−M, 0], [0, 1]), the delay differential equation(3) has a unique solution
v(ϕ, .) : t 7−→ u(ϕ, t) defined on [−M,+∞[. Furthermore, v(ϕ, .) is continuous
on [−M,+∞[ and of class C1 on [0,+∞[.

Proof. Since g is C1 on (]a, b[)2, the functional

H : ψ 7→ H (ψ) = K.ψ (0) . (1− ψ (0))− σ.ψ (0) .g (ψ (−τ) , ψ (−ω)) , (5)
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is C1 on the open subset C
(

[−M, 0], (]a, b[)2
)

of C. Then H is continuous

and Lipschitzian on all compact subsets of C
(

[−M, 0] , (]a, b[)2
)

. According to

the existence and smoothness theorem in (Hale (1993), the delay differential
equation (3) has a unique continuous solution v (ψ, .) = vψ(.) on [−M,+∞[.
By the same theorem, we have v (ψ, .) is C1 on [0 +∞[.

Theorem 2. Under the hypothesis of Theorem 1, we have vϕ(t) ∈ [0, 1]
for all t ∈ [0,+∞[, that is C ([−M, 0] , [0, 1]) is positively invariant for the semi-
flow generated by the delay differential equation (3) (see [32] for the definition
and the properties of positively invariant subsets).

Proof. Assume that ϕ ∈ C ([−M, 0], [0, 1]). Let us prove that vϕ(t) ∈ [0, 1]
for all t ∈ [0,+∞[.

Assume that {t ≥ 0 : vϕ(t) > 1} 6= ∅. Put t0 = inf {t ≥ 0 : vϕ(t) > 1} and
v = vϕ. We have t0 ≥ 0 , v(t0) = 1 and v′(t0) = Kv(t0)(1 − v(t0)) −
σv(t0)g(v (t0 − τ) , v (t0 − ω)). Thus,

v′(t0) = Kv(t0)(1− v(t0))− σv(t0)g(v (t0 − τ) , v (t0 − ω))

= K(1− 1)− σg(v (t0 − τ) , v (t0 − ω))

= −σg(v (t0 − τ) , v (t0 − ω))) < 0.

The inequality v′(t0) < 0 is in contradiction with the minimality of t0. Conse-
quently, {t ≥ 0 : vϕ(t) > 1} = ∅, and then vϕ (t) ≤ 1 for any t ≥ 0.

Now assume that {t ≥ 0/vϕ(t) < 0} 6= ∅. Put t1 = inf {t > 0/vϕ(t) < 0}
and v = vϕ. We have v(t1) = 0 with t1 ≥ 0 and for a certain t2 > t1 v(t2) > 0 .
Put α = sup{t ∈ [t1, t2] / v (t) = 0}. Thus, α < t2, v (α) = 0 and v (t) > 0 for

all t ∈]α, t2]. Then, we have v′(t)
v(t) = K(1− v(t)− σg(v (t− τ) , v (t− ω))) for all

t ∈]α, t2].

Thus, v(t) > 0 and
d ln (v(t))

dt
= K(1 − v(t)) − σg(v (t− τ) , v (t− ω)), for

all t ∈]α, t2].
Then,

lim
t→α, t>α

d ln (v(t))

dt
= K(1− v(α)) − σg(v (α− τ) , v (α− ω))

= K − σg(v (α− τ) , v (α− ω)).

On the other hand, lim
t→α
t>α

v(t) = v(α) = 0.
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Thus, lim
t→α
t>α

ln (v (t)) = −∞. It is in contradiction with the fact that

lim
t→α
t>α

d ln (v(t))

dt
(t = α) = K − σg(v (α− τ) , v (α− ω)) ∈ R.

This means that the assumption {t ≥ 0/vϕ(t) < 0} 6= ∅ fails. Consequently,
{t ≥ 0/vϕ(t) < 0} = ∅ which means that vϕ(t) ≥ 0 for all t ∈ [−M,+∞[.

We conclude that vϕ(t) ∈ [0, 1] for all t ∈ [0,+∞[.

In other words, vϕ(t) ∈ [0, 1] for all ϕ ∈ C([−M, 0], [0, 1]) and all t ∈
[0,+∞[.

Equilibrium points

For all x ∈ [0, 1], put x̂ (θ) = x for all θ ∈ [−M, 0]. We have x̂ ∈ C ([−M, 0], [0, 1]).
The steady state equation is H(v) = 0 which has the solutions v0 = 0, and all
v∗ ∈ ]0, 1] satisfying σf(v∗) = K(1− v∗) with f (x) = g (x, x) for all x ∈ [0, 1].

The number of nontrivial solutions of the steady state’s equation depends
on the nature of the C1 nonnegative function f . In Section 3 we aim to provide
sufficient conditions on the dynamical system’s parameters under which the
asymptotic stability holds.

3. The asymptotic stability of equilibriums

In this section, we supply sufficient conditions for asymptotic stability of the
equilibriums in the sense of the monotone dynamical systems theory. First we
recall the following notions.

Definition 3. A continuous linear functional h : C −→ R is said to verify
the (Lµ) assumption if, for some µ > 0, we have

h(ω)+µ.ω(0) ≥ 0 for all ω ∈ C and ω ≥µ 0.

Let x ∈ R, we denote by x̂ ∈ C the constant function defined by x̂(θ) = x
for all θ ∈ [−r, 0]. Consider the function h̃ defined on {x ∈ R/x̂ ∈ C} by

h̃(x) = h(x̂). (6)
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Theorem 4. ([29, 32]) Consider the following delay differential equation:






x′(t) = h(xt) for t ≥ 0,

x(t) = φ(t) for − τ ≤ t ≤ 0.
(7)

Let h̃ be defined by (6). Suppose that h is continuously differentiable in a
neighbourhood of an equilibirum x∗ of (7) and dh(x∗) verifies (Lµ) for some
µ > 0, then

(i) if h̃′(x∗) < 0 then x∗ is asymptotically stable.

(ii) if h̃′(x∗) > 0 then x∗ is unstable.

In what follows and for all x ∈ [0, 1], we denote f (x) = g (x̂, x̂). It is clearly
seen that f is C1 in [0, 1].

3.1. The asymptotic stability of the zero equilibrium

Theorem 5. If f(0) >
K

σ
, then the equilibrium 0 is asymptotically

stable. If f(0) <
K

σ
, then the equilibrium 0 is unstable.

Proof. For all ϕ ∈ C([−M, 0], [0, 1]) and all ψ ∈ C, we have

dH(ϕ)(ψ) = K[(1− 2ϕ(0)ψ(0)] − σg(ϕ(−τ), ϕ(−ω)))ψ(0)

−σϕ(0)
∂g

∂x
(ϕ(−τ), ϕ(−ω))ψ(−τ) − σϕ(0)

∂g

∂y
(ϕ(−τ), ϕ(−ω))ψ(−ω).

Then
dH(0)(ψ) = (K − σ.f(0)).ψ(0) for all ψ ∈ C.

Thus, for µ > K + σ‖g‖∞ and all ψ >µ 0 we have dH(0)(ψ) + µψ(0) > 0.
Hence, (Lµ) holds for dH(0).

With notations above, we have

H̃(x) = K.x.(1 − x)− σ.x.f(x) for all x ∈ [0, 1].

Then, H̃ ′(x) = K.(1 − 2x)− σ.f(x)− σ.x.f ′(x) for all x ∈ [0, 1].

Particularly, H̃ ′(0) = K−σf(0)). It follows that if f(0) >
K

σ
, then H̃ ′(0) <

0. In other words and by Theorem4, [29], 0 is asymptotically stable. Otherwise,

if f(0) <
K

σ
, then H̃ ′(0) > 0, and then 0 is unstable. The proof is completed.
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3.2. Asymptotic stability of the equilibrium v∗ if f ′(v∗) < 0

Let v∗ be a nonzero equilibrium of the delay differential equation (3). In this
section we assume that f ′ (v∗) < 0. For all ψ ∈ C, we have















dH(v∗)(ψ) = K[(1− 2.v∗)− σ.g(v∗, v∗)].ψ(0)

−σ.v∗.
∂g

∂x
(v∗, v∗).ψ(−τ) − σ.v∗.

∂g

∂y
(v∗, v∗).ψ(−ω),

H̃ ′(v∗) = K(1− 2.v∗)− σf(v∗)− σv∗.f ′(v∗).

However, K(1− v∗)−σ.g(v∗, v∗) = K(1− v∗)−σf(v∗) = 0, as v∗ is an equilib-
rium. Thus,






H̃ ′(v∗) = −Kv∗ − σv∗.f ′(v∗) = −v∗(K + σf ′(v∗)),

dH (v∗) (ψ) = −Kv∗.ψ (0)− σ.v∗.
∂g

∂x
(v∗, v∗).ψ(−τ) − σ.v∗.

∂g

∂y
(v∗, v∗).ψ(−ω).

Theorem 6. Let v∗ be a non zero equilibrium of the delay differential

equation (3) such that
∂g

∂x
(v∗, v∗) < 0,

∂g

∂y
(v∗, v∗) < 0 and f ′(v∗) < 0.

• If −
K

σ
< f ′(v∗) < 0, then the equilibrium v∗ is asymptotically stable.

• If f ′(v∗) < −
K

σ
, then v∗ is unstable.

Proof. Let µ > 0 and ψ > 0. We have
{

ψ ≥ 0 and ψ 6= 0,
s 7→ ψ(s)eµs is increasing.

Obviously, ψ(0) > 0 and ψ (−τ) ≥ 0. Since f ′(v∗) < 0, we have

dH(v∗)(ψ) + µ.ψ(0) = [µ−Kv∗]ψ(0) − [σ.v∗.
∂g

∂x
(v∗, v∗).ψ(−τ)

+ σ.v∗.
∂g

∂y
(v∗, v∗).ψ(−ω)]

≥ (µ−Kv∗)ψ(0).

Then, for µ > Kv∗, we have dH(v∗)(ψ)+µ.ψ(0) > 0. Hence, the property (Lµ)
holds for dH(v∗). We can clearly see that

H̃ ′(v∗) < 0 ⇔ K + σf ′(v∗)) > 0 ⇔ f ′(v∗) > −
K

σ
.
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Moreover, H̃ ′(v∗) > 0 ⇔ f ′(v∗) < −
K

σ
. The theorem is then proved.

3.3. Asymptotic stability of the equilibrium v∗ if f ′(v∗) > 0.

Let v∗ be an equilibrium of the delay differential equation(3) such that v∗ > 0.
In this section we assume that f ′ (v∗) > 0. Consider the following assumption:

v∗(
∂g

∂x
(v∗, v∗)τ −

∂g

∂y
(v∗, v∗)ω) >

1

σ
. (H1)

Theorem 7. Let v∗ be a non zero equilibrium of the delay differential

equation (3) such that
∂g

∂x
(v∗, v∗) > 0,

∂g

∂y
(v∗, v∗) > 0 and f ′(v∗) > 0 . If the

condition (H1) is satisfied, then v∗ is asymptotically stable.

Proof. We have

dH (v∗) (ψ) = −Kv∗.ψ (0)−σv∗.
∂g

∂x
(v∗, v∗).ψ(−τ)−σv∗.

∂g

∂y
(v∗, v∗).ψ(−ω),∀ψ ∈ C.

Let us set


























λ = −Kv∗,

ηx = −σv∗ ∂g
∂x

(v∗, v∗),

ηy = −σv∗ ∂g
∂y
(v∗, v∗),

η−x = min (ηx, 0) ,
η−y = min (ηy, 0) .

Then, dH(v∗)(ψ) = λψ(0) + ηψ(−τ) + ηψ(−ω) for all ψ ∈ C.
For all µ ≥ 0, for all ψ ≥µ 0 we have

dH(v∗)(ψ) + µψ(0) = (λ+ µ)ψ(0) + ηxψ(−τ) + ηyψ(−ω)

≥ h(µ)ψ(0),

where
h(µ) = λ+ µ+ η−x e

µτ + η−y e
µω for all µ ≥ 0.

dH(v∗) satisfies (Lµ) if and only if there exists µ ≥ 0 such that h(µ) ≥ 0.
First, remark that h(µ) = λ+ µ+ η−x e

µτ + η−y e
µω ≥ λ+ µ+ (η−x + η−y )e

µM .
Then, if λ + η−x + η−y > 0 we have h(0) > 0. which is not the case here

because both λ and η are nonpositive. Else h increases from h(0) = λ+η−x +η−y
and reaches its maximum at µ∗ such that h′(µ∗) = 0.

We have h′(µ∗) = 1 + η−x τe
µ∗τ + η−y ωe

µ∗ω = 0.
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Then µ∗ satisfies µ∗τ = ln(
−1−η−y ωe

µ∗ω

η−x τ
), and µ∗ > 0. Then,

−1−η−y ωe
µ∗ω

η−x τ
> 1.

Calculating, we obtain the following estimation

1 + η−x τ ≤ η−y ω,

consequentely if (H1) holds, then dH(v∗) verifies (Lµ). Since f ′(v∗) > 0, we
have

H̃ ′(v∗) = −v∗(K + σf ′(v∗)) < 0.

Then, Theorem 4 applies and the equilibrium v∗ is asymptotically stable.

4. Numerical simulations and application to clinical cases of certain

infectious diseases

To illustrate the theoretical results above, we calibrate the delay differential
equation (3) using given real clinical data in order to obtain optimized param-
eters under R software using the library “deSolve”. Then, we use MATLAB
solver “dde23” to obtain simulations for different initial values. Recalling that

g (x, y) = 1−
ψ (y)

Φ (x)
,

we consider two particular cases of Φ and ψ. Namely, when both functions are
linear and the case where ψ is linear and Φ is nonlinear. The choice of typical
forms of g is motivated by the previous studies in basic papers on this model,
where authors used to distingish two principal cases of the immune efficiency
function; a monotone one, and a bell-shaped form one (see [1, 2]).

4.1. First typical form of g: linear ψ and linear Φ

Consider the following form of g

g (x, y) = 1−
ay + b

cx+ d
, (8)

where c > 0 and d > 0. The equilibriums are v0 = 0 and v∗ ∈ {v∗1 , v
∗
2} which

are roots of the polynomial p(r) = cK
σ
r2+

(

K
σ
(d−c)+c−a

)

r+
(

d(1− K
σ
)−b

)

.

(i.e. satisfying the equation σf(v∗) = σg(v∗, v∗) = K(1− v∗)).

Stability for v0: We have f(0) = g(0, 0) = 1−
b

d
. One can see that, if

b

d
< 1−

K

σ
,



STABILITY ANALYSIS OF A VIRAL IMMUNE RESPONSE... 725

then the equilibrium v0 is stable, and if
b

d
> 1−

K

σ
, then v0 is unstable.

Stability for v∗:


























∂g

∂x
(v∗, v∗) =

c(av∗ + b)

(cv∗ + d)2
,

∂g

∂y
(v∗, v∗) =

−a

cv∗ + d
,

f ′(v∗) =
bc− ad

(cv∗ + d)2
.

First in the case where bc−ad < 0, the equilibrium v∗ is asymptotically stable;

provided that
bc− ad

(cv∗ + d)2
>

−K

σ
, and it is unstable if

bc− ad

(cv∗ + d)2
<

−K

σ
.

While in the case where bc − ad > 0 the condition (H1) of asymptotic

stability can be reformulated as: v∗(
c(av∗ + b)

cv∗ + d
τ + aω) >

cv∗ + d

σ
.

4.1.1. Numerical application

For τ = 1, ω = 2 and for K = 0.5, σ = 0.25 we take the following values for
parameters a = 0.4, b = 0.1, c = 0.3 and d = 0.4, we obtain two roots of p;
v∗1 = −1 and v∗2 = 0.8333. As a biological value we consider just the second
equilibrium v∗2 . Calculations gave g′(v∗2) < 0. Then the asymptotic stability of

v∗2 is ensured (since we have
bc− ad

(cv∗2 + d)2
= −0.307 > −2 =

−K

σ
) . Moreover

one can observe in Figure 1 that for different initial valuesϕ1(t) = 1, ϕ2(t) =
0.9, ϕ3(t) = 0.1 exp 2t+ 0.25,
ϕ4(t) = 0.5(1.02 − 0.7 exp 2t) and ϕ5(t) = 0.11(0.5 exp t + 0.2), we the four
respectively corresponding solutions u1, u2, u3, u4, and u5 converge monoton-
ically to the endemic equilibrium v∗2 ≃ 0.83333.

Figure 1: Numerical simulations for different initial values under condi-
tions of stability of the endemic equilibrium corresponding τ = 1 and ω = 2.
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4.1.2. Application to SARS-CoV-2 infection clinical case

Time t (days) 8 9 10 11 12 13 14 15

Viral load v(t) 0.158 1.412 1.585 0.1 0.016 0.001 0.0004 0.0001

Table 1: Normalised (divide by 106) number of copies per 103 cells during
8 days from the day of virus detection (day 8).

We use the clinical case measures in Table 1 of SARS-CoV-2 for patient 2
from [19] (Figure 2). The delay τ represents the duration of cell proliferation
and differentiation to effector cells. It is equal to the incubation period of
SARS-CoV-2. According to recent works [25, 31], this period varies between 5
and 9 days, we take the mean value τ = 7 days for the immune cells activation
delay and ω = 9 days for the cells apoptosis delay.

The calibration of the equation with the clinical data (see Table 1) for the
case of linear ψ, linear Φ as in(8) and for K = σ = 0.5, gives the follow-
ing parameters a ≃ 1.36183279, b ≃ −0.13305134, c ≃ 0.19769703 and d ≃
0.01210387. For τ = 7 and ω = 9 and for the four different initial valuesϕ1(t) =
0.1, ϕ2(t) = 0.3, ϕ3(t) = 0.25 exp t + 0.2, and ϕ4(t) = 0.5(1 − 0.25 ∗ exp 2t),
we observe that the four respectively corresponding solutions u1, u2, u3, and
u4 converge monotonically to the endemic equilibrium v∗cov ≃ 0.013 as shown
in Figure 2.

Figure 2: Numerical simulations corresponding to a COVID-19 case with
τ = 7 days and ω = 9 days.
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4.2. Second typical form of g: linear ψ, nonlinear Φ

For ψ(x) = x+ d and Φ(y) = (y + d)(1− a exp(− (y−b)2

2c2
)) we get

g (x, y) = 1−
y + d

x+ d

[

1− a exp(−
(y − b)2

2c2
)
]

. (9)

We denote f(x) := g (x, x) = a exp(− (x−b)2

2c2 ). Remark that f(.) is good-shaped.

Stability for v0: We have f(0) = g(0, 0) = a exp(−
b2

2c2
).

One can see that, if a exp(− b2

2c2
) > K

σ
, then the equilibriumv0 is stable.

And if a exp(− (b)2

2c2
) < K

σ
, then v0 is unstable.

Stability for v∗:



























∂g

∂x
(v∗, v∗) =

1

v∗ + d
(1− a exp(−

(v∗ − b)2

2c2
)),

∂g

∂y
(v∗, v∗) =

−1

v∗ + d
[1− (1−

v∗ − b

c2
)a exp(−

(v∗ − b)2

2c2
)],

f ′(v∗) = −
a

c2
(v∗ − b) exp(−

(v∗ − b)2

2c2
).

First, in the case where v∗ < b, the equilibrium v∗ is asymptotically stable;

provided that
a

c2
(v∗ − b) exp(−

(v∗ − b)2

2c2
) <

K

σ
.

And it is unstable if
a

c2
(v∗ − b) exp(−

(v∗ − b)2

2c2
) >

K

σ
.

While in the case where v∗−b > 0, the condition H1 of asymptotic stability
can be reformulated as:

v∗[(1− (1−
v∗ − b

c2
)a exp(−

(v∗ − b)2

2c2
))τ + (1− a exp(−

(v∗ − b)2

2c2
))ω] >

v∗ + d

σ
.

4.2.1. Application to a second SARS-CoV-2 infection case

For the present example, data is taken from [9], and represents p-values of
viral copies measurements from nasopharyngeal swabs tests, for 67 confirmed
COVID-19 patients between mild and severe cases. We still consider the time
incubation of the virus or the immune cell’s activation delay as τ = 7 days and
the cell’s apoptosis delay as ω = 9 days.

The calibration of the equation with the clinical data of a COVID-19 virus
infected patient (see Table 2) for the second form of g (9) and for K = 0.5, σ =
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Time t (Days) 1 3 5 7 9 11 13 15 17 19 21

Viral load v(t) 1 25.12 19.95 2.51 0.631 0.158 0.1 0.063 0.051 0.039 0.035

Table 2: The normalised (divide by 106) number of copies per 100 cells
during 21 days post-infection (See [9]).

0.25 and a fixed d = 1, gives the following parameters a ≃ 2.242, b ≃ 0.059 and
c ≃ 0.0013. For τ = 7 and ω = 9 and for the four different initial values ϕ1(t) =
0.1, ϕ2(t) = 0.3, ϕ3(t) = 0.4 exp t+ 0.2, and ϕ4(t) = 0.5(1 − 0.25 ∗ exp 2t), we
observe that the four respectively corresponding solutions u1, u2, u3, and u4
converge monotonically to the endemic equilibrium v∗cov ≃ 0.248 as shown in
Figure 3.

Figure 3: Numerical simulations corresponding to a COVID-19 case with
τ = 7 days and ω = 9 days.

4.2.2. Application to Ebola Virus Deseas infection case

Time t (Days post-infection ) 5 6 7 8 9 10

Viral load v(t) 0.061 0.141 0.205 0.3 0.165 0.06

Time t (Days post-infection ) 11 12 13 14 15 16

Viral load v(t) 0.04 0.003 0.0034 0.0002 0.00017 0.00002

Table 3: The normalised (divide by 102) number of copies per 106 cells
during 16 days from the day of Ebola virus detection (day 5 post-infection)
(See [24]).

In this example we calibrate the model (for the nonlinear specific form of
g as in (9)) to clinical measurement of viral load in blood taken from a patient
who survived to Ebola virus disease. Data is collected from [24]. The viral
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load mesurement is performed; per 2 × 106 cells; directly from a sample tube
containing patient blood. Table 3 presents the viral load given by normalised
(divide by 102) number of copies (virions) per 106 cells, from the day of Ebola
virus detection (day 5 post-infection ) and over 16 post-infection days. We
consider the time incubation of the virus is τ = 5 days and the cell’s apoptosis
delay is ω = 10 days.

The calibration of the equation with the clinical data of an Ebola virus
disease infected patient (see Table 3) for the second form of g (9) and for
K = 0.5, σ = 0.25 and a fixed d = 1, gives the following parameters a ≃
5.2585, b ≃ 0.0557 and c ≃ 0.0014. For τ = 5 and ω = 10 and for the four
different initial values ϕ1(t) = 0.1, ϕ2(t) = 0.15, ϕ3(t) = 0.25 exp t+ 0.2, and
ϕ4(t) = 0.5(1−0.25∗exp 2t), we observe that the four respectively corresponding
solutions u1, u2, u3, and u4 converge monotonically to the endemic equilibrium
v∗cov ≃ 0.25 as shown in Figure 4.

Figure 4: Numerical simulations corresponding to an Ebola virus disease
case with τ = 5 days and ω = 10 days.

5. Conclusion

In this work we establish asymptotic stability results for a DDE describing viral
infection against delayed immune response. The model involves two delays,
one is related to the clonal expansion of immune cells and other one to their
death. We investigate under suitable conditions including the immune efficiency
function g and the delays τ and ω, the asymptotic stability or the unstability
of the infection-free equilibrium. Particulary if g(0, 0) > K

σ
for a sufficiently

smooth g the infection-free equilibrium 0 is asymptotically stable that means if
the immune system is activated and surpasses the viral load then we obtain the
extinction of virus by the immune cells. Furthermore we show that stability of
pandemic equilibrium (v∗ 6= 0) is closely related to the form of g as well as the
value of the delays τ and ω but independently of the initial value ϕ. Then we
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examine the obtained stability conditions for typical cases of g and we apply
the theoretical results to real clinical data of SARS-CoV-2 and Ebola virus
diseases. The numerical simulations show that different solutions converge to
the stationary one monotonically (i.e. the nearest the solution starts from the
equilibrium value the fastest it tends to it). As it can be observed from the
simulations, we can have global convergence of the solutions to a particular
steady state. Therefore, a study of global stability of solutions for this model
can be the subject of further investigations.
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