THE SYSTEM OF d-GENERATORS OF d-SKEW FIELD OF
Sp(n)-INVARIANT d-RATIONAL FUNCTIONS
Kobyljon Muminov1, Saidaxbor Juraboyev2 1National University of Uzbekistan named after Mirzo Ulugbek
Tashkent - 100174, UZBEKISTAN 2Fergana State University
Fergana - 150100, UZBEKISTAN
Let be an dimensional (the left) vector space over the skew-field of quaternion numbers,
and be a group of symplectic transformations of . Also, the skew-field of all invariant non-commutative differential rational functions denoted by
. In the paper an explicit description of a finite generating system in the differential skew-field
.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] R.G. Aripov, Dj. Khadjiyev, The complete system of differential and integral invariants of a curve in Euclidean geometry, Russian Mathematics,
51, No 7 (2007), 1-14.
[2] G. Almkvist, W. Dicks, E. Formanek, Hilbert series of fixed free algebras and noncommutative classical invariant theory, Journal of Algebra,
93 (1985), 189-214.
[3] V.I. Chilin, K.K. Muminov, Equivalence of paths in Galilean geometry,
Journal of Mathematical Sciences, 245, No 3 (2020), 297-309.
[4] C. Chevalley, Theory of Lie Groups, Princeton University Press, Princeton
(1946).
[5] M. Domokos, V. Drensky, A Hilbert-Nagata theorem in noncommutative
invariant theory, Trans. of the American Mathematical Society, 350, No 7
(1998), 2797-2811.
[6] F. Dumas, An introduction to noncommutative polynomial invariants, In:
Homological Methods and Representations of Non-commutative Algebras,
Mar del Plata, Argentina (2006), 6-17.
[7] E. Formanek, Noncommutative Invariant Theory, In: Proc. of AMS-IMSSIAM Joint Summer Research Conference in the Mathematical Sciences
on Group Actions on Rings, Held at Brunswick, Maine (1984), 87-136.
[8] I. Halperin, On the Gram matrix, In: Canadian Mathematical Bulletin, 5,
No 3 (1962), 265-280.
[9] Dj. Khadjiyev, Complete systems of differential invariants of vector fields
in a euclidean space, Turkish Journal of Mathematics, 34 ( 2010), 543-559.
[10] Dj. Khadjiyev, I. Oren, O. Peksen, Generating systems of differential invariants and the theorem on extense for curves in the pseudo-Euclidean
geometry, Turkish Journal of Mathematics, 37 (2013), 80-94.
[11] V.K. Kharchenko, Algebras of invariants of free algebras, Algebra and
Logic, 17 (1978), 316-321.
[12] I.I. Kirchey, Cramer’s rule for quaternionic systems of linear equations,
Journal of Mathematical Sciences, 155, No 6 (2008), 839-858.
[13] I.I. Kirchey, Linear differential systems over the quaternion skew field,
arxiv: 1812.03397v1 Rings and Algebras (2018), 1-39.
[14] A.N. Koryukin, Noncommutative invariants of reductive groups, Algebra
and Logic, 23, No 4 (1984), 419-429.
[15] D. Mamford, J. Forgaty, Geometric Invariant Theory, Springer-Verlag,
Berlin (1982).
[16] K.K. Muminov, Equivalence of paths with respect to the action of a symplectic group, Izv. Vyssh. Uchebn. Zaved. Mat., 7, (2002), 27-38.
[17] K.K. Muminov, I.V. Chilin, A transcendence basis in the differential field
of invariants of pseudo-Galilean group, Russian Mathematics, 63, No 4
(2019), 15-24.
[18] M.K. Khodyrovich, J.S. Solyjonovich, Equivalence of paths under the action of the real representation of Sp (n), Journal of Applied Mathematics
and Physics, 10, No 5 ( 2022), 1837-1858.
[19] M. Nagata, On the fourtheen problem of Hilbert, Lecturies in Tata institute
of Fundamental Research, Bombey (1963).
[20] A.S. Sharipov, F.F. Topvoldiyev, On invariants of surfaces with isometric
on sections, Mathematics and Statistics, 10, No 3 (2022), 523-528.
[21] E.B. Vinberg, V.L. Popov, Theory of invariants, Sovremen. Probl. Matem.
Fundam. Napravl, 55 (1998), 137-309.
[22] J. Volcic, On domains of noncommutative rational functions, Linear Algebra and its Applications, 516 (2017), 69-81.
[23] J. Voight, Quaternion Algebras, Springer International Publ. 288 (2022).
[24] H. Weyl, The Classical Ggroups. Their Invariants and Representation,
Princeton Univ. Press, Princeton (1997).