THE SYSTEM OF d-GENERATORS OF d-SKEW FIELD OF
Sp(n)-INVARIANT d-RATIONAL FUNCTIONS

Abstract

Let $H^{n}$ be an $n$ dimensional (the left) vector space over the skew-field of quaternion numbers, and $Sp(n)$ be a group of symplectic transformations of $H^{n}$. Also, the skew-field of all $Sp(n)-$invariant non-commutative differential rational functions denoted by $\Re{{\left[\!\left[ x,\bar{x} \right]\!\right]}^{Sp\left( n \right)}}$. In the paper an explicit description of a finite generating system in the differential skew-field $\Re{{\left[\!\left[ x,\bar{x} \right]\!\right]}^{Sp\left( n \right)}}$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 6
Year: 2022

DOI: 10.12732/ijam.v35i6.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] R.G. Aripov, Dj. Khadjiyev, The complete system of differential and integral invariants of a curve in Euclidean geometry, Russian Mathematics, 51, No 7 (2007), 1-14.
  2. [2] G. Almkvist, W. Dicks, E. Formanek, Hilbert series of fixed free algebras and noncommutative classical invariant theory, Journal of Algebra, 93 (1985), 189-214.
  3. [3] V.I. Chilin, K.K. Muminov, Equivalence of paths in Galilean geometry, Journal of Mathematical Sciences, 245, No 3 (2020), 297-309.
  4. [4] C. Chevalley, Theory of Lie Groups, Princeton University Press, Princeton (1946).
  5. [5] M. Domokos, V. Drensky, A Hilbert-Nagata theorem in noncommutative invariant theory, Trans. of the American Mathematical Society, 350, No 7 (1998), 2797-2811.
  6. [6] F. Dumas, An introduction to noncommutative polynomial invariants, In: Homological Methods and Representations of Non-commutative Algebras, Mar del Plata, Argentina (2006), 6-17.
  7. [7] E. Formanek, Noncommutative Invariant Theory, In: Proc. of AMS-IMSSIAM Joint Summer Research Conference in the Mathematical Sciences on Group Actions on Rings, Held at Brunswick, Maine (1984), 87-136.
  8. [8] I. Halperin, On the Gram matrix, In: Canadian Mathematical Bulletin, 5, No 3 (1962), 265-280.
  9. [9] Dj. Khadjiyev, Complete systems of differential invariants of vector fields in a euclidean space, Turkish Journal of Mathematics, 34 ( 2010), 543-559.
  10. [10] Dj. Khadjiyev, I. Oren, O. Peksen, Generating systems of differential invariants and the theorem on extense for curves in the pseudo-Euclidean geometry, Turkish Journal of Mathematics, 37 (2013), 80-94.
  11. [11] V.K. Kharchenko, Algebras of invariants of free algebras, Algebra and Logic, 17 (1978), 316-321.
  12. [12] I.I. Kirchey, Cramer’s rule for quaternionic systems of linear equations, Journal of Mathematical Sciences, 155, No 6 (2008), 839-858.
  13. [13] I.I. Kirchey, Linear differential systems over the quaternion skew field, arxiv: 1812.03397v1 Rings and Algebras (2018), 1-39.
  14. [14] A.N. Koryukin, Noncommutative invariants of reductive groups, Algebra and Logic, 23, No 4 (1984), 419-429.
  15. [15] D. Mamford, J. Forgaty, Geometric Invariant Theory, Springer-Verlag, Berlin (1982).
  16. [16] K.K. Muminov, Equivalence of paths with respect to the action of a symplectic group, Izv. Vyssh. Uchebn. Zaved. Mat., 7, (2002), 27-38.
  17. [17] K.K. Muminov, I.V. Chilin, A transcendence basis in the differential field of invariants of pseudo-Galilean group, Russian Mathematics, 63, No 4 (2019), 15-24.
  18. [18] M.K. Khodyrovich, J.S. Solyjonovich, Equivalence of paths under the action of the real representation of Sp (n), Journal of Applied Mathematics and Physics, 10, No 5 ( 2022), 1837-1858.
  19. [19] M. Nagata, On the fourtheen problem of Hilbert, Lecturies in Tata institute of Fundamental Research, Bombey (1963).
  20. [20] A.S. Sharipov, F.F. Topvoldiyev, On invariants of surfaces with isometric on sections, Mathematics and Statistics, 10, No 3 (2022), 523-528.
  21. [21] E.B. Vinberg, V.L. Popov, Theory of invariants, Sovremen. Probl. Matem. Fundam. Napravl, 55 (1998), 137-309.
  22. [22] J. Volcic, On domains of noncommutative rational functions, Linear Algebra and its Applications, 516 (2017), 69-81.
  23. [23] J. Voight, Quaternion Algebras, Springer International Publ. 288 (2022).
  24. [24] H. Weyl, The Classical Ggroups. Their Invariants and Representation, Princeton Univ. Press, Princeton (1997).