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Abstract: Let Hn be an n dimensional (the left) vector space over the skew-
field of quaternion numbers, and Sp(n) be a group of symplectic transformations
of Hn. Also, the skew-field of all Sp(n)−invariant non-commutative differential

rational functions denoted by ℜ[[x, x̄]]Sp(n). In the paper an explicit description

of a finite generating system in the differential skew-field ℜ[[x, x̄]]Sp(n).
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1. Introduction

Let V be a finite-dimensional vector space over a field k (of real or complex
numbers) with basis x1, ..., xn and let k[V ] = k[x1, ..., xn] denote the commu-
tative polynomial ring of rank n over k. Let GL (V ) be a general linear group
of linear transformations V . If G is a finite subgroup of GL (V ), then there is
induced homogeneous action of G on k[V ], the commutative polynomial ring.

Let G be a subgroup of GL (V ). We shall study the algebra of invariant
with respect to the action of the group G, e.g.,

Received: October 4, 2022 © 2022 Academic Publications
§Correspondence author



904 K. Muminov, S. Juraboyev

k[V ]G = {f ∈ k [V ] : g · f = f for all g ∈ G} .

In the course of the invariant theory, the problems of describing the genera-
tors of the algebra k[V ]G and finding the defining relations between them are
considered (for example, see, [21], p.144). In particular, the problem related
to the finite generation of the algebra k[V ]G is known as Hilbert’s 14th prob-
lem. This problem was solved positively by Hilbert-Nagata-Mumford theorem
for many algebraic linear groups, including reductive groups (see, [15], [19]).
However, in general, e.g., for any algebraic linear group G ∈ GL (V ), the isn’t
solved positively. In the study of Hilbert’s 14th problem, H. Weyl’s works are
commendable (see, [24]). In his works, he shoved fundamental theorems of
the Invariant Theory and their methods proving under action of some classical
groups.

The differential analogue of the above problems were studied by R.G. Aripov
[1], I.V. Chilin [3], Dj. Khadjiyev [9], K.K. Muminov [16], and obtained the pos-
itively solutions of this problem with respect to the action orthogonal, pseudo-
orthogonal and symplectic groups. At present, the results obtained are applied
to differential geometry, non-Euclidean geometry and other important fields of
science (see, [10], [17], [18], [20]).

Also, the algebra of non-commutative invariants is widely studied by scien-
tists. In particular, for free associative algebras of non-commutative invariants,
positive solutions of analogues of many problems in the commutative case, ob-
tained. Usually G−invariant free associative algebras of finite rank are denoted
by k〈V 〉G. Problems such as the description of the generators of the algebra
k〈V 〉G, the determination of a finite or infinite number of them, and the de-
termination of relation between them represent a non-commutative analogue
of Hilbert’s 14th problem. In about it, many important facts, and analogues
of the main theorems are given in the works of such scientists as G. Almkvists
[2], M. Domokos, V. Drensky [5], E. Formanek [7], V.K. Kharchenko [11], A.N.
Koryukin [14].

In this paper, we study the differential analogue of Hilbert’s 14th problem
for the case k = ℜ, V = Hn and G = Sp (n), where ℜ is a center of the skew-
field quaternion numbers, Hn is a n dimensional vector space over H and Sp (n)
is a group of symplectic (compact symplectic) transformations of the space Hn.

This article is organized as follows: In Section 2, the quaternion number,
the group of symplectic transformations in quaternion space are Gram matrix
are introduced briefly. Also, the some properties of these notions are given by
remarks and propositions. In Section 3, the preliminary notions of the theory of
non-commutative invariants are described, and the system of generators of the
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ring of Sp(n)−invariant non-commutative polynomials is shown. Also, in this
section it is studied too, which the skew-field of the non-commutative rational
functions. Using the results of Sections 3, the system of generators of a dif-
ferential skew-field of Sp(n)−invariant differential rational functions is restored
and expounded in detail in Section 4. Section 5 is the final part.

2. Preliminaries

2.1. Symplectic group

Let H denote the set of quaternion numbers. We write

H = {q = t+ xi+ yj + zk | t, x, y, z ∈ R} ,

where

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Conjugation and modulus is given respectively by

q̄ = (t+ xi+ yj + zk) = t− xi− yj − zk,

|q| = √
qq̄ =

√

t2 + x2 + y2 + z2.

Then q1q2 = q̄2q̄1 for q1, q2 ∈ H.

Re (q) =
1

2
(q + q̄) ,Re (q1q2) = Re (q2q1) = Re (q̄1q̄2) = Re (q̄2q̄1) .

A pure quaternion is of the form

Pu (q) = xi− yj − zk =
1

2
(q − q̄) ,

and an inverse of the quaternion q is of the form q−1 = q̄
|q| . Also, the set H is

a skew field under the operations addition and multiplications (see, [4]).

Let Hn be an n dimensional linear space over the skew field H (multiplica-
tion of numbers is defined on the left), where H is a skew field of quaternion
numbers. The elements of Hn will be represented as n dimensional row-vector
x = (ζ1, ζ2, ..., ζn), where ζl ∈ H, l = 1, n. By GL (Hn), denote the group of all
invertible linear transformations of the space. We consider the metric function
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〈x, y〉 : Hn ×Hn → H, which satisfy the following conditions for ∀x, y, z ∈ Hn

and λ, µ ∈ H:






〈x, x〉 ≥ 0, 〈x, x〉 = 0 ⇔ x = θ;

〈x, y〉 = 〈y, x〉;
〈x, λy + µz〉 = 〈x, y〉 λ̄+ 〈x, z〉 µ̄,

where q̄ means the conjugate of a quaternion q = a+ bi+ cj + dk.
Principally, we obtain the metric function as a bilinear form as follows:

〈x, y〉 = ζ1η̄1 + ζ2η̄2 + ...+ ζnη̄n. (1)

It is known that the symplectic group Sp (n) with respect to the function 〈x, y〉
is defined as a subgroup of as follows (see, [4], p. 35):

Sp (n) = {σ ∈ GL (Hn) : 〈σx, σy〉 = 〈x, y〉 , x, y ∈ Hn } , (2)

Let GL (n,H) be a group of the invertible square quaternion matrices of order
n, i.e.,

GL (n,H) = {g ∈ M (n,H) : ddet g 6= 0} ,
where ddet g = cdeti

(

gḡT
)

= rdetj
(

gḡT
)

, ḡT− Hermitian conjugate of the
transpose of a matrix g (see, [12]). It is plain that the relation σx ↔ xg is
true for all x ∈ Hn and σ ∈ GL (Hn), where g ∈ GL (n,H). In the case , the
symplectic group Sp (n) is defined as follows

Sp (n) =
{

g ∈ GL (n,H) : gḡT = E
}

,

where E is identity element of the group GL (n,H).

2.2. Gram matrices and it’s elementary properties.

It is known that the function 〈x, y〉 expresses of scalar product in the space V

(see, [13], p.11). Let {x1, x2, ..., xm} be a set of arbitrary vectors in Hn. The
matrix











〈x1, x1〉 〈x1, x2〉 ... 〈x1, xm〉
〈x2, x1〉 〈x2, x2〉 ... 〈x2, xm〉

...
...

...
...

〈xm, x1〉 〈xm, x2〉 ... 〈xm, xm〉











for some finite natural number m will be called Gram matrix of the vectors
x1, x2, ..., xm and denote by Γ (x1, x2, ..., xm) (m) (see, [23], p.49). Obviously
that Gram matrix expresses Hermitian matrix.
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Remark 1. If the condition aij = āji (i 6= j) is hold for elements of matrix
A = (aij)

n
i,j=1 ∈ M (n,H), then the matrix A will be called Hermitian matrix

(see,[12], p.854).

It means that the properties of Hermitian matrix and its determinants are
valid for the Gram matrix and its determinants. We state some properties of
the Gram matrix in the following.

Proposition 1. If the set B = {x1, x2, ..., xm} is orthogonal system of
vectors x1, ..., xm ∈ Hn, then Γ (x1, ..., xm) (m) is a diagonal quaternion matrix
of order m.

Proposition 2. If the set B = {x1, x2, ..., xn} is orthonormal basis of the
space Hn, then Γ (x1, x2, ..., xn) (n) is an identity quaternion matrix of order
n.

Proposition 3. If the set B = {x1, x2, ..., xn} is a set of basis vectors for
Hn, then

〈x, y〉 = ([x]B) Γ (x1, x2, ..., xn) (n)
(

[y]B

)T

,

where ∀x, y ∈ Hn.

Corollary 1. If the set B is orthonormal basis, then 〈x, y〉 = [x]B[ȳ]
T
B.

Proposition 4. det Γ (x1, ..., xm) (m) = det Γ̄T (x1, ..., xm) (m).

Proposition 5. For arbitrary a set of vectors a1, a2, ..., an ∈ Hn and the
scalar number λ ∈ H, the equality

det Γ (a1, ..., ak , ..., al, ..., an) (n)

= det Γ (a1, ..., ak + λal, ..., al, ..., an) (n)

holds.

This property follows from the properties of Hermitian matrix (see, [12],
[8]).

Corollary 2. If a set of vectors a1, a2, ..., as ∈ Hn generated from a set of
vectors x1, x2, ..., xs ∈ Hn by orthogonalization, then the equality

det Γ (x1, ..., xs) (s) = det Γ (a1, ..., as) (s) = |a1|2|a2|2...|as|2

is true.
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Corollary 3. If a set of vectors x1, x2, ..., xs ∈ Hn is linear independent,
then the relation det Γ (x1, x2, ..., xs) (s) > 0, otherwise the relation det Γ(x1,
x2, ..., xs) (s) = 0 is true.

3. Theory of non-commutative invariants.

Let K be any field of characteristic zero, and let V be a finite dimensional
vector space over the field K, with basis x1, x2, ..., xn. Also, let

K 〈V 〉 = K 〈x1, ..., xn〉 = K ⊕ V ⊕ (V ⊗ V )⊕ V ⊗3 ⊕ ...

denote the free associative algebra (or tensor algebra) of rank n. Naturally that
the elements of the algebra K 〈V 〉 is represented with in form a polynomial with
a non-commutative variables x1, ..., xn (see, [7], p-88).

Let G be a subgroup of GL (V ), where GL (V ) is a group of all invertible
linear transformations in V . As an action of the group G to the space V is
defined in form (v, g) = v.g, where g ∈ G, v ∈ V , also an action of G to the
algebra K 〈V 〉 is defined in form (g, f) = f (v.g), where g ∈ G, f ∈ K 〈V 〉,
v ∈ V .

Definition 4. The polynomial f ∈ K 〈V 〉 is called G−invariant, if the
equality f (v.g) = f (v) holds for all g ∈ G (see, [6]).

It is known that a set of all G−invariant polynomials is a sub-algebra to
K 〈V 〉 and denote by K〈V 〉G i.e.,

K〈V 〉G = {f ∈ K 〈V 〉 : f (v.g) = f (v) , ∀g ∈ G, ∀v ∈ V } .

Let S be a set, which consisted of elements K〈V 〉G.

Definition 5. The set S is called the system of generators of the algebra
K〈V 〉G, if the smallest sub-algebra in K〈V 〉G containing the set S corresponds
to K〈V 〉G (see, [1], p.7).

The problem of describing the generating system of the algebra of invariants
expresses the main problem of the Invariant Theory. We will consider this
problem for the cases K = ℜ, V = Hn, G = Sp (n), in the following.
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Let ℜ be such a commutative, unit sub-ring of the skew field H that
the equality ax = xa is valid for ∀a ∈ ℜ, ∀x ∈ H. We also denote by
ℜ〈x1, ..., xn〉Sp(n), the ring of Sp (n)−invariant polynomials of arbitrary pos-
itive (integer) degree with quaternion vector-variable over the ring ℜ, where
xl ∈ Hn, l = 1, n. When studying the system of generators of the ring, we
use from the operation ∗ : ℜ 〈x1, ..., xn〉 → ℜ 〈x1, ..., xn〉, which will satisfy the

following conditions, together with operations of the ring ℜ〈x1, ..., xn〉Sp(n):
i) (f∗)∗ = f, ∀f ∈ ℜ 〈x1, ..., xn〉 ;

ii) (a · f)∗ = a∗ · f∗, ∀a ∈ ℜ, ∀f ∈ ℜ 〈x1, ..., xn〉 ;

iii) (f + g)∗ = f∗ + g∗, ∀f, g ∈ ℜ 〈x1, ..., xn〉 ;

iii) (f · g)∗ = g∗ · f∗, ∀f, g ∈ ℜ 〈x1, ..., xn〉 .
In particular, we obtain as the Hermitian conjugate of the operation ∗, in the
ring of polynomials with quaternion variables. Also, we replace of the notation
f∗ with f̄ , and notation ℜ 〈x1, ..., xn〉 with ℜ 〈x1, ..., xn; x̄1, ..., x̄n〉. Obviously,
this ring represents the free algebra of rank n2 with quaternion variables xlm ∈
H, where l,m = 1, n.

Theorem 6. All the elements of the ring

ℜ〈x1, ..., xn; x̄1, ..., x̄n〉Sp(n)

are generated by applying the operations of ring and Hermitian conjugate to
the bilinear forms 〈xl , xm〉.

Proof. Let us say the vectors x1, x2, ... will be given in the space V , and
the vectors ξ1, ξ2, ... will be given in the space V ∗, where V ∗ is a adjoin space
to V . Obviously, we can express any polynomial f [x1, x2, ... |ξ1, ξ2, ... ] by the
form P {(xm |ξn )}, where

(xm |ξn ) =
n
∑

k=1

xlkξkm, l,m = 1, n.

Hence, to prove Theorem 6, it is enough to show that the product (xl |ξm ) can
be expressed in the linear form 〈xl, xm〉.

Let a pair of linear independent sets of vectors x1, x2, ..., xn ∈ V and
ξ1, ξ2, ..., ξn ∈ V ∗, also let Sp (n)−invariant polynomial f [x1, x2, ..., xn |ξ1, ξ2, ... ,
ξn] are given, i.e.,
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f [x1, x2, ..., xn |ξ1, ξ2, ... , ξn]

= f









x11, x12, ..., x1n
x21, x22, ..., x2n

..............................

xn1, xn2, ..., xnn

∣

∣

∣

∣

∣

∣

∣

∣

ξ11, ξ12, ..., ξ1n
ξ21, ξ22, ..., ξ2n

..............................

ξ21, ξ22, ..., ξ2n









. (3)

Naturally, in this case, it is possible to establish a one-value correspondence
between the sets of vectors {x1, ..., xn} and {ξ1, ..., ξn} in the form {ξ1, ξ2, ..., ξn} ↔
{

xπ(1), xπ(2), ..., xπ(n)
}

, where

π :

(

1 2 ... n

i1 i2 ... in

)

→
(

1 2 ... n

j1 j2 ... jn

)

, ik, jk = 1, n, k = 1, n.

Using from the transformation σ ∈ Sp (V ), we can pass the vector ar-
guments x1, x2, ..., xn to the vectors e1, e2, ..., en, which the standard basis of
vectors in V . Then, we have the equalities

σx1 = x1g = e1, σx2 = x2g = e2, ..., σxn = xng = en,

where g ∈ Sp (n). In general, these equalities can be written in form the matrix
equation Xg = E, whereX = (xij)

n
i,j=1, and E is an identity matrix. From this,

the relation g = X−1 will follow. It is known that the matrix g is an element
of the group Sp (n). Hence, the equality g = X−1 = X̄T is true. In turn, when
transforming the set {x1, x2, ..., xn} into the set {e1, e2, ..., en}, respectively, the
vectors ξ1, ξ2, ..., ξn will change to the set of vectors ξ

′

1, ξ
′

2, ..., ξ
′

n and will be
defined as follows:

Based on the correspondence

{ξ1, ξ2, ..., ξn} ↔
{

x∗π(1), x
∗
π(2), ..., x

∗
π(n)

}

we have the correspondence

{

ξ
′

1, ξ
′

2, ..., ξ
′

n

}

↔
{(

σxπ(1)
)∗
,
(

σxπ(2)
)∗
, ...,

(

σxπ(n)
)∗}

=
{

g∗x∗π(1), g
∗x∗π(2), ..., g

∗x∗π(n)

}

.

From this, we have the equality

Ξ = X ·X∗
π =

(

n
∑

i=1

xmix̄π(l)i

)n

m,l=1

=
(〈

xm, xπ(l)
〉)n

m,l=1
, (4)
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where Ξ =
{

ξ
′

lm

}n

l,m=1
. It follows from equality (4) that arbitrary element ξ

′

lm

is defined in form 〈xl, xm〉. Then, we have the equality

f (x1, ..., xn |ξ1, ..., ξn) = f
(

e1, ..., en

∣

∣

∣
ξ
′

1, ..., ξ
′

n

)

= P {〈xi, xj〉} .

This implies that any G−invariant polynomial f (x1, ..., xn, x̄1, ..., x̄n) is ex-
pressed by bilinear forms 〈xl, xm〉. Theorem 8 is proved.

Corollary 7. The generating system of the ring
ℜ〈x1, ..., xn; x̄1, ..., x̄n〉Sp(n) is expressed by bilinear forms 〈xl, xm〉 .

3.1. The skew field of Sp(n)−invariant noncommutative rational

functions

Let K be any field of characteristic 0, and let x = (x1, ..., xn) be a n-tuple of
noncommutative indeterminate x1, ..., xn. It is known that a n.c (noncommuta-
tive) polynomial is a formal linear combination of words in x with coefficients in
K. For example, 3x41−2x1x2+2x2x1−4, 4x21−x1x2x3+x1x3x2−5. We denote
the free associative algebra of n.c polynomials an n generators K 〈x1, ..., xn〉.
A n.c rational expression is a syntactically valid combination of n.c polynomi-

als, arithmetic expression, +, ·, −1, and parentheses, i.e.,
(

1− x3 + 2x2x
−1
3

)−1
,

x−1
1 + x−1

2 − 3x3(x1 − x2)
−1. This expressions can be naturally evaluated an

n-tuples of matrices. An expressions is called non-degenerate if it is valid to
evaluate it on at least any such tuple of matrices. Two non-degenerate expres-
sions with same evaluations whenever they are both defined are equivalent. A
n.c rational function is an equivalent class of a non-degenerate rational expres-
sions. They from the free skew field K [[x1, ..., xn]], which is the universal skew
field of fraction of the free algebra K 〈x1, ..., xn〉 (see, [22]). In what follows, we
will studythe skew field K [[x1, ..., xn]] in the case K = ℜ and xl ∈ Hn, l = 1, n.
It is known that the invertible element exist for an arbitrary non-zero element
of the commutative ring with unity element, and the equality q−1 = q̄

|q|2
holds

for every quaternion number q ∈ H, (q 6= 0). Then, the non-zero element of
the skew field ℜ [[x1, ..., xn]] can be expresses in form a−1 · b or b · a−1, where
a, b ∈ ℜ 〈x1, ..., xn〉. For example,

x−1
11 − x−1

12 =
x̄11

|x11|2
− x̄12

|x12|2
=

|x12|2x̄11 − |x11|2x̄12
|x11|2|x12|2

=

= (x12x̄12x̄11 − x11x̄11x̄12)
(

|x11|2|x12|2
)−1

.
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Let G be an arbitrary subgroup of GL (n,H). The skew field of rational invari-
ants, denoted by ℜ[[x1, ..., xn]]G, is the skew field of elements of ℜ [[x1, ..., xn]]
that are invariant under the action of G, that is

ℜ[[x1, ..., xn]]G = {r ∈ ℜ [[x1, ..., xn]] : r (xg) = r (x) for all g ∈ G} .

It is known that the relation

ℜ[[x1, ..., xn]]G ⊂ ℜ [[x1, ..., xn]]

is true, for G ∈ GL (n,H). Let G be the group Sp (n). In this case, we write

of ℜ[[x1, ..., xn]]G, by ℜ[[x1, ..., xn, x̄1, ..., x̄n]]Sp(n).

Theorem 8. Any element of the skew field

ℜ[[x1, ..., xn, x̄1, ..., x̄n]]Sp(n)

is rationally expressed by Sp (n)−invariant n.c polynomials.

Proof. Let f [[x1, ..., xn, x̄1, ..., x̄n]] be an element of the skew field ℜ[[x1, ..., xn,
x̄1, ..., x̄n]]

Sp(n). According to the above statement, we have the expression

f [[x1, ..., xn, x̄1, ..., x̄n]]

= q−1 [x1, ..., xn, x̄1, ..., x̄n] p [x1, ..., xn, x̄1, ..., x̄n] ,

where p [x1, ..., xn, x̄1, ..., x̄n] and q [x1, ..., xn, x̄1, ..., x̄n] are elements of ℜ[[x1, ...,
xn, x̄1, ..., x̄n]]

Sp(n).
Also, according to the definition of a G−invariant rational function, the

equality
f [[x1g, ..., xng, x1g, ..., xng]] = f [[x1, ..., xn, x̄1, ..., x̄n]]

is true, for ∀g ∈ Sp (n). From this we obtain the following:

q−1 [x1g, ..., xng, x1g, ..., xng] p [x1g, ..., xng, x1g, ..., xng]
= q−1 [x1, ..., xn, x̄1, ..., x̄n] p [x1, ..., xn, x̄1, ..., x̄n] .

(5)

From (5), we obtain the following expression:

p [x1g, ..., xng, x1g, ..., xng] =

=
{

q [x1g, ..., xng, x1g, ..., xng] q
−1 [x1, ..., xn, x̄1, ..., x̄n]

}

× p [x1, ..., xn, x̄1, ..., x̄n] . (6)
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It is clear that the relations

deg (p [x1g, ..., xng, x1g, ..., xng]) ≤ deg (p [x1, ..., xn, x̄1, ..., x̄n])
deg (q [x1g, ..., xng, x1g, ..., xng]) ≤ deg (q [x1, ..., xn, x̄1, ..., x̄n])

}

(7)

are always true, where deg f is degree of the polynomial f . From expressions
(5)-(7) we will have the equalities

deg (p [x1g, ..., xng, x1g, ..., xng]) = deg (p [x1, ..., xn, x̄1, ..., x̄n]) ,

deg (q [x1g, ..., xng, x1g, ..., xng]) = deg (q [x1, ..., xn, x̄1, ..., x̄n]) .

According to these equalities we can say that the product
q [x0g, ..., xng, x0g, ..., xng] q

−1 [x0, ..., xn, x̄0, ..., x̄n] does not depend on any of
the variables x1, x2, ..., xn. Thus, we can denote it as

q [x1g, ..., xng, x1g, ..., xng] q
−1 [x1, ..., xn, x̄1, ..., x̄n] = λ (g) .

From this we obtain the equalities

p [x1g, ..., xng, x1g, ..., xng] = λ (g) p [x1, ..., xn, x̄1, ..., x̄n]
q [x1g, ..., xng, x1g, ..., xng] = λ (g) q [x1, ..., xn, x̄1, ..., x̄n]

}

. (8)

It is known from invariant theory that a function that satisfies equality (8) is
called a relative invariant with the multiplier λ(g) (see, [24], p.25). Also, the
function λ (g) is called a characteristic multiplier, and satisfies the following
conditions for an arbitrary g in G:

1. λ (g1g2) = λ (g2)λ (g1);

2. λ (e) = 1, where e is a unity element of the group G;

3. λ (g1) 6= λ (g2) for all g1, g2 ∈ G that g1 6= g2 .

It is known from theory of invariants, that if g is an element of the group
GL (n,K), then the equality λ (g) = (det g)m is true, where K is any field (see,
[24], p. 26). But, if K = H then the equality λ (g) = (det g)m is not true.
Because det g don’t simultaneously satisfy conditions 1)- 3). Accordingly, for
g ∈ GL (n,H) we get a function λ (g) = (ddetg)m satisfying conditions 1)-3) as
a function λ (g), where ddetg = det

(

gḡT
)

. It is plain that if the matrix g be
a element of the group Sp (n) then ddetg = 1. This implies λ (g) = 1 and the
equalities

p [x1g, ..., xng, x1g, ..., xng] = p [x1, ..., xn, x̄1, ..., x̄n] ;



914 K. Muminov, S. Juraboyev

q [x1g, ..., xng, x1g, ..., xng] = q [x1, ..., xn, x̄1, ..., x̄n]

are hold, i.e., the polynomials p [x1, ..., xn, x̄1, ..., x̄n] and
q [x1, ..., xn, x̄1, ..., x̄n] are Sp (n)-invariants. Thus, any
Sp (n)-invariant rational functions are expressed rationally with Sp (n)-invariant
polynomials. The theorem is proved.

Due to Theorem 6 and Theorem 8 the corollary follows:

Corollary 9. All the Sp (n)−invariant n.c rational function are rationally
expressed by bilinear forms 〈xl, xm〉.

4. The system generating of the differential skew field ℜ [[x, x̄]]Sp(n).

Let K be an arbitrary commutative ring and let d : K → K be its differential,
i.e., the conditions 1) d (a+ b) = d (a) + d (b); 2) d (a · b) = d (a) b + ad (b); 3)
d (1K) = 0K for ∀a, b, 1K ∈ K.

Consider a quaternion-valued function of real variable
f : R → H (x is a real variable ) such that

f (t) = f1 (t) + f2 (t) i+ f3 (t) j + f4 (t) k.

The first derivative of a quaternion function f (t) with respect to the real vari-
able t we denote by

f ′ (t) :=
df (t)

dt
=

df1 (t)

dt
+

df2 (t)

dt
i+

df3 (t)

dt
j +

df4 (t)

dt
k.

It easy to prove the following proposition on properties of the derivative of a
quaternion functions.

Proposition 6. (see, [13], Prop.2.1) If q : R → H and
r : R → H are differentiable, then (q ± r) (t), qr (t) and for any integer n ≥ 1,
qn (t) are differentiable and

i1) (q ± r)′ (t) = q′ (t)± r′ (t);

i2) (q · r)′ (t) = q′ (t) r (t) + q (t) r′ (t);

i3) [aq (t)]
′

= d (a) q (t) + aq′ (t);
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i4) [qn (t)]
′

=
n−1
∑

λ=0

qλ (t) q′ (t) qn−1−λ (t);

i5)
[

q−1 (t)
]′

= −q−1 (t) q′ (t) q−1 (t).

Let x = (x1, ..., xn) be such a vector function that its components is quater-
nion function with real variables. The differential of the vector function x is
denoted by dx, and it is defined in the form

dx = (dx1, dx2, ..., dxn) or x′ =
(

x
′

1, x
′

2, ..., x
′

n

)

.

In the skew field ℜ [[x1, ..., xn; x̄1, ..., x̄n]] we consider the operation

δ : ℜ [[x1, ..., xn]] → ℜ [[x1, ..., xn]]

which satisfies the following conditions:

j1) ∀xl ∈ Hn for all δ (xl) = xl+1;

j2) δ (axl) = d (a) xl + axl+1 for all ∀a ∈ ℜ and ∀xl ∈ Hn.

It is clear that if the vector function xl ∈ Hn is a vector function all of whose
components are functions of a real variable, then the operation δ can be consid-
ered as an operation differentiable. In this case, the skew field ℜ[[x1, ..., xn; x̄1,
..., x̄n]] is called a differential skew field (d−skew field), if we consider the op-
eration δ together. Now we insert the notations x = x(0), xl = x(l), δ

(

x(l)
)

=

x(l+1). Using the notations, we can write the skew field ℜ [[x1, ..., xn; x̄1, ..., x̄n]]
in the form ℜ [[x, x̄]]. In the d-skew field ℜ [[x, x̄]], the notion G−invariance and
the notion of a system of G−invariant generators are defined similarly to the
notions in the previous subsections. In the following, we consider of the problem
describing system of d−generators of the d−skew field ℜ[[x, x̄]]G.

Theorem 10. Let G = Sp (n). Then any element of the skew field is
generated with invariant n.c polynomials in the form

〈

x(l), x(m)
〉

, l,m ∈ Z+
0 by

applying operations of a skew field and differentiation.

Theorem 10 represents a differential analogue of Corollary 9.

Theorem 11. Let be G = Sp(n). Then the system of G−invariant n.c
polynomials in the form

〈

x(r−1), x(r−1)
〉

,
〈

x(r−1), x(r)
〉

, r = 1, n (9)

is a finite system of generators in the d-skew field ℜ[[x, x̄]]G .
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Proof. According to Theorem 10 that any n.c the d−rational function f [[x, x̄]]

∈ ℜ[[x, x̄]]Sp(n) is expressed d−rationally in terms of Sp (n)−invariant polyno-
mials of the form

〈

x(l), x(m)
〉

,

l,m ∈ Z+
0 . Therefore to prove Theorem 11 it suffices to show that the polyno-

mials
〈

x(l), x(m)
〉

is expressed by elements of system (9). To do this, we use the
following properties and lemmas:

Proposition 7. The equality
〈

x(l), x(m)
〉

=
〈

x(m), x(l)
〉

is true for ∀x(l), x(m)

∈ Hn.

Proof.

〈

x(l), x(m)
〉

=
(

x
(l)
1 x̄

(m)
1 + ...+ x

(l)
n x̄

(m)
n

)

= x
(m)
1 x̄

(l)
1 + ...+ x

(m)
1 x̄(l)n =

〈

x(m), x(l)
〉

.

Proposition 8. For arbitrary vectors x(l), x(m) ∈ Hn, the equality

〈

x(l), x(m)
〉′

=
〈

x(l+1), x(m)
〉

+
〈

x(l), x(m+1)
〉

holds.

Proof.

〈

x(l), x(m)
〉′

=
(

x
(l)
1 x̄

(m)
1 + ...+ x(l)n x̄(m)

n

)′

=
(

x
(l+1)
1 x̄

(m)
1 + x

(l)
1 x̄

(m+1)
1 + ...+ x(l+1)

n x̄(m)
n + x(l)n x̄(m+1)

n

)

=
(

x
(l+1)
1 x̄

(m)
1 + ...+ x(l+1)

n x̄(m)
n

)

+
(

x
(l)
1 x̄

(m+1)
1 + ...+ x(l)n x̄(m+1)

n

)

=
〈

x(l+1), x(m)
〉

+
〈

x(l), x(m+1)
〉

.

Proposition 9 Let A be a linearly independent set of the vectors x, x(1), ...,
x(n−1) in Hn. Then, the following relations are always hold:

a) det Γ
(

x, x(1), ..., x(n−1)
)

(n) 6= 0 for the elements of the set;

b) det Γ
(

x, x(1), ..., x(n−1), y
)

(n+ 1) = 0 for the elements of the set and any
non-zero vector y in Hn;
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c) det Γ′
(

x, x(1), ..., x(n−1), y, z
)

(n+ 1) = 0, for the elements of the set and
arbitrary non-zero vectors y, z in Hn, i.e.,

det Γ′
(

x, x(1), ..., x(n−1), y, z
)

(n+ 1) =

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈

x, x(1)
〉 〈

x, x(2)
〉

... 〈x, z〉
〈

x(1), x(1)
〉 〈

x(1), x(2)
〉

...
〈

x(1), z
〉

...
... ...

...
〈

y, x(1)
〉 〈

y, x(2)
〉

... 〈y, z〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0;

d) det Γ′
(

x, x(1), ..., x(n−1), y
)

(n+ 1) 6= 0, for the elements of the set and
arbitrary non-zero vectors y in Hn.

Proposition 9 follows from properties of the determinant of Gram matrix.
Using the above properties we will prove the following lemmas.

Lemma 1. Any Sp (n)−invariant n.c d−polynomials in the form
〈

x(l), x(m)
〉

are expressed rationally in terms of elements of the system

〈

x(r−1), x(r−1)
〉

,
〈

x(r−1), x(r)
〉

, 1 ≤ r ≤
[

l +m

2

]

, r ∈ N. (10)

Proof. To prove Lemma 1, we consider separately the following cases:
Case 1. Let be l ≤ m. In this case, we apply the principle of mathematical

induction with respect to the difference m− l = h:
1. For h = 0, h = 1 the assertion in Lemma 1 is true;
2. Let h = 2. Then, the assertion in Lemma 1 follows from the equality

〈

x(l), x(l+2)
〉

=
〈

x(l), x(l+1)
〉′

−
〈

x(l+1), x(l+1)
〉

;

3. Suppose the assertion in Lemma 1 is be true for all h ≤ s i.e., for k

satisfying the condition l ≤ r ≤
[

2l+s
2

]

,
〈

x(l), x(l+s)
〉

is expressed in terms of

non-commutative d-polynomials of the form
〈

x(r−1), x(r−1)
〉

and
〈

x(r−1), x(r)
〉

;
4. Now let us check that the assertion in Lemma 1 is also true for h = s+1:

according to Proposition 8 the equality

〈

x(l), x(l+s+1)
〉

=
〈

x(l), x(l+s)
〉′

−
〈

x(l+1), x(l+s)
〉

holds; here the polynomial
〈

x(l), x(l+s)
〉

satisfy of assertion in Lemma 1 to ac-

cording supposition; furthermore, the d-polynomial
〈

x(l+1), x(l+s)
〉

also satisfy
of the assertion in Lemma 1 to according the condition l+ s− l−1 = s−1 < s;
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thus, the polynomial
〈

x(l+1), x(l+s)
〉

is expressed in terms to the d-polynomials
〈

x(r1−1), x(r1−1)
〉

and
〈

x(k
′−1), x(k

′)
〉

for all r1, where

l + 1 ≤ r1 ≤
[

2l+s+1
2

]

, r1 ∈ N ; in this case, it is not difficult to determine that
the following conditions hold for k′:

r1 =

{

≤ r for all s = 2κ, κ ∈ N,

≤ r + 1 for all s = 2κ+ 1, κ ∈ N.

From these it follows that the assertion in Lemma 1 is true for the d-polynomial
〈

x(l), x(l+s+1)
〉

. Hence, according to the principle of mathematical induction the
assertion in Lemma 1 is true for all h.

Case 2. For this case, the assertion in Lemma 1 follows from Case 1 using

by the equality
〈

x(l), x(m)
〉

=
〈

x(m), x(l)
〉

. Lemma 1 is proved.

Lemma 2. All Sp (n)−invariant d−polynomials in the form

〈

x(r−1), x(r−1)
〉

,
〈

x(r−1), x(r)
〉

, r ∈ N

are d−rationally expressed in terms of elements of system (9).

Proof. According to the assertion in Lemma 1, the assertion in Lemma 2 is
true for 1 ≤ r ≤ n. In the following, we will prove the lemma only r = n + 1.
All other cases (i.e., r = n+ s, s ∈ {2, 3, ...}) can be shown by the principle of
mathematical induction.

Let be r = n + 1. In this case, according to the part b) of Property 9 the
equality det Γ

(

x, x(1), ..., x(n)
)

(n+ 1) = 0 is hold, i.e.,

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈x, x〉
〈

x, x(1)
〉

...
〈

x, x(n)
〉

〈

x(1), x
〉 〈

x(1), x(1)
〉

...
〈

x(1), x(n)
〉

...
... ...

...
〈

x(n), x
〉 〈

x(n), x(1)
〉

...
〈

x(n), x(n)
〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (11)

All elements of the determinant det Γ
(

x, x(1), ..., x(n)
)

(n+ 1), except for 〈x(n),
x(n)〉, are expressed by the elements of system (9). Because for the order of
derivatives of these elements satisfies the condition max

{[

l+m
2

]}

=
[

2n−1
2

]

=
n − 1, where l, m is the order of the derivative. Furthermore, since the set
of vectors x, x(1), ..., x(n−1) in Hn, the relation det Γ

(

x, x(1), ..., x(n−1)
)

(n) 6= 0
is valid. It follows that Rn+1n+1 6= 0 also holds, where Rn+1n+1 is the first
minor of det Γ

(

x, x(1), ..., x(n)
)

(n+ 1). Hence, the matrix corresponding to

Rn+1n+1 is invertible. This allows the element
〈

x(n), x(n)
〉

of the determinant
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det Γ
(

x, x(1), ..., x(n)
)

(n+ 1) = 0 to be expressed using the equality (11) in
term of the remaining elements of the matrix. Therefore, the d−polynomial
〈

x(n), x(n)
〉

is d−rationally expressed the elements of system (9); also according
to part c) of Proposition 9 the equality

det Γ′
(

x, x(1), ..., x(n−1), x(n), x(n+1)
)

(n+ 1) = 0

is true for a set linearly independent of the vectors x, x(1), ..., x(n−1) and arbi-
trary vectors x(n), x(n+1), i.e.,

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈

x, x(1)
〉 〈

x, x(2)
〉

...
〈

x, x(n+2)
〉

〈

x(1), x(1)
〉 〈

x(1), x(2)
〉

...
〈

x(1), x(n+2)
〉

...
... ...

...
〈

x(n+1), x(1)
〉 〈

x(n+1), x(2)
〉

...
〈

x(n+1), x(n+2)
〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (12)

According to part d) of Proposition 9, the double determinant of the first minor
R

′

n+1n+1 of

det Γ′
(

x, x(1), ..., x(n−1), x(n), x(n+1)
)

(n+ 1)

is non-zero. Hence, the matrix corresponding to R
′

n+1n+1 is invertible. There-
fore, according to the assertion in Lemma 1 and the case in above all elements
of det Γ′

(

x, x(1), ..., x(n−1), x(n), x(n+1)
)

(n+ 1), except from
〈

x(n), x(n+1)
〉

are

expressed by the elements of system (9). Thus, the polynomial
〈

x(n), x(n+1)
〉

is
also expressed in terms of the elements of system (9). The lemma is proved.

An assertion in Theorem 11 follows from assertions of Lemma 2. Theorem
11 is proved.

5. Conclusion

In conclusion, we can state the following corollary from Theorem 11.

Corollary 12. The d-skew-field of Sp(n)−invariant d-rational functions
over ℜ has a finite number of d-generators, and their number is equal to 2n.
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