ON THE MAGNETIC RADIAL
SCHRÖDINGER-HARTREE EQUATION

Abstract

We prove, in any space dimension $d\geq4$, the decay in the energy space for the defocusing magnetic Schrödinger-Hartree equation with radial initial data in $H^{1}(\R^{d})$. We will exhibit also new Morawetz inequalities and localized correlation estimates.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 5
Year: 2022

DOI: 10.12732/ijam.v35i5.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. Arora, Scattering of radial data in the focusing NLS and generalized Hartree equation, Discrete Contin. Dyn. Syst., 39, No 11 (2019), 6643- 6668.
  2. [2] A. Arora, S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, Michigan Math. J., 71, No 3 (2021), 619-672.
  3. [3] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University Courant Institute of Mathematical Sciences, New York, 2003.
  4. [4] J. Colliander, M. Czubak, J. J. Lee, Interaction Morawetz estimate for the magnetic Schrödinger equation and applications, Adv. Differ. Equ., 1, No 9 (2014), 805-832.
  5. [5] P. D’Ancona, L. Fanelli, L. Vega, N. Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258, No 10 (2010), 3227-3240.
  6. [6] A. Elgart, B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60, No 4 (2007), 500-545.
  7. [7] L. Fanelli, L. Vega, Magnetic virial identities, weak dispersion and Strichartz inequalities, Math. Ann., 344 (2009), 249-278.
  8. [8] J. Ginibre, T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2, Comm. Math. Phys., 151 (1993), 619-645.
  9. [9] J. Ginibre, G. Velo, Quadratic Morawetz inequalities and asymptotic completeness in the energy space for nonlinear Schrödinger and Hartree equations, Quart. Appl. Math., 68 (2010), 113-134.
  10. [10] T. Kato, Pertubation Theory for Linear Operators, 2, Springer-Verlag, Berlin, 1980.
  11. [11] E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10, No 1 (2007), 43-64.
  12. [12] M. Lewin, N. Rougerie, Derivation of Pekar’s polarons from a microscopic model of quantum crystal, SIAM J. Math. Anal., 45, No 3 (2013), 1267- 1301.
  13. [13] C. Miao, G. Xu, L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data, J. Funct. Anal., 252, No 2 (2007), 605-627.
  14. [14] K. Nakanishi, Energy scattering for Hartree equations, Math. Res. Lett., 6 (1999), 107-118.
  15. [15] H. Nawa, T. Ozawa, Nonlinear scattering with nonlocal interactions, Comm. Math. Phys., 146 (1992), 259-275.
  16. [16] M. Tarulli, H 2 -scattering for systems of weakly coupled fourth-order NLS equations in low space dimensions, Potential Anal., 51, No 2 (2019), 291- 313.
  17. [17] M. Tarulli and G. Venkov, Decay and scattering in energy space for the solution of weakly coupled Schrödinger-Choquard and Hartree-Fock equations, J. Evol. Equ., 21 (2021), 1149-1178.
  18. [18] M. Tarulli and G. Venkov, Decay in energy space for the solution of fourth-order Hartree-Fock equations with general non-local interactions, J. Math. Anal. Appl., 516, No 2 (2022), Art. 126533; https://doi.org/10.1016/j.jmaa.2022.126533.