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1. Introduction

Consider the Cauchy problem for the nonlinear defocusing magnetic Schrödinger
equation with Hartree-type nonlinearity (mSH), for d ≥ 4:

{
i∂tu+∆A

x u− [| · |d−γ ∗ |u|2]u = 0, (t, x) ∈ R×R
d,

u(0, x) = f(x) ∈ H1(Rd),
(1)

where u = u(t, x) : R × R
d → C, ∇A

x = ∇− iA, A =
(
A1, . . . , Ad

)
∈ C

1
loc(R

d \
{0};R), so that divA = 0 and −∆A

x = −∇A
x · ∇A

x is self-adjoint on L2(Rd). We
shall assume also

|A|2 − 2iA · ∇ ∈ L
d
2
,∞(Rd), A ∈ Ld,∞(Rd). (2)

Moreover

‖|x|xB‖2L∞(Rd) ≤
2

3
(d− 1)(d − 3), (3)

where B : Rd → Md×d(R) is defined by B := DA − (DA)t, with (DA)ij =
∂iA

j , (DA)tij = (DA)ji. We will impose, from now on, also that d− 2 ≤ γ ≤ d.
The main result of this paper is the decay of the solutions to (1) in the

energy space. More specifically,

Theorem 1. Assume d ≥ 4 and let u ∈ C(R;H1(Rd)) be a global solution

to (1) with radial initial data f ∈ H1(Rd) such that (2) and (3) are satisfied.

Then, for any 2 < r < 2d
d−2 , one has

lim
t→±∞

‖u(t, x)‖Lr(Rd) = 0. (4)

The equation (1) is important in many models of the mathematical physics.
For instance, it was introduced in quantum mechanics in order to analyse the
behaviour of the Bose-Einstein condensates, by considering the self-interactions
of the charged particles, as it can be seen in [6], [11], [12] and the references
therein. This enhanced several works treating the Schrödinger-Hartree equation
(SH). We cite [9] where the asymptotic completeness and the existence of the
wave operators are shown for both the nonlinear Schrödinger equation with
L2−H1 intercritical nonlinearity and for the SH equation. Regarding the latter
equation, the previous results were successively improved in [14]. Moreover, in
[8] and [15] the pseudo-conformal transform is utilized to study the scattering for
the solutions to the SH equation in spaces with higher regularity thanH1. In the
critical case, [13] established scattering for general data with d ≥ 5. Scattering
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in the focusing case was achieved in [1] and [2] for small data and radial data,
respectively. We refer also to [16] and [18] for the NLS in a general setting. One
of the fundamental tools used to study the dynamics of solutions to (1) is the
Morawetz multiplier technique and the associated estimates. In our recent work
[17], we successfully developed a method combining the Morawetz inequalities,
a localization step, and interpolation together with a contradiction argument
accomplishing the decay of the solutions to the SH. This strong property plays
a crucial role in the theory of the scattering, as underlined in [3], [17] and [18]
(see also references therein). Moved by that we present here a generalization
of such a method to the case of the mSH. We emphasize that our result is new
in the literature and minimal assumptions are made on the magnetic function
A(x). In addition, we mention that our strategy eases the one exhibited in [4].

2. Preliminaries

We indicate Lr(Rd) = Lr
x, for 1 ≤ r ≤ ∞. We denote also

H1,r(Rd) = (1−∆x)
− 1

2Lr(Rd), H1,r(Rd) = H1,r
x ,

and H1,2(Rd) = H1(Rd) = H1
x. Given any Banach space X, we define

‖f‖L∞

t X = ess sup
t∈R

‖f(x)‖X .

We adopt the notation L∞
T X when one restricts t ∈ (−T, T ), for T > 0. The

following results are also useful (see [1] and [5], respectively).

Lemma 2. Let f be a radial function in H1
x. Then

∥∥∥|x|
d−1

2 f
∥∥∥
2

L∞

x

. ‖f‖L2
x
‖∇xf‖L2

x
. (5)

Proposition 3. Let A be as in (2) and (3). For any 1 < r < d, one gets

∥∥∥(−∆A
x )

1

2 f
∥∥∥
Lr
x

.
∥∥∥(−∆x)

1

2 f
∥∥∥
Lr
x

(6)

and

∥∥∥(−∆x)
1

2 f
∥∥∥
L2
x

.
∥∥∥(−∆A

x )
1

2 f
∥∥∥
L2
x

. (7)
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We need also the next maximal estimate (see [10]) which is a consequence
of the Hardy inequality.

Proposition 4. Let 0 < γ < d, we have

∥∥∥[| · |d−γ ∗ |u|2]
∥∥∥
L∞

x

≤ C(d, γ)‖u‖2

Ḣ
d−γ
2

x

.

Recall that the solution u to (1) satisfies two conservation laws

‖u(t)‖L2
x
= ‖f‖L2

x
, E(u(t)) = E(f), (8)

where

E(u(t)) =
1

2

∫

Rd

|∇A
x u(t, x)|

2 dx+
1

4

∫

Rd

∫

Rd

|u(t, x)|2|u(t, y)|2

|x− y|d−γ
dxdy. (9)

We address [4] for more details on the argument.

3. Well-posedness

In this section, we establish the following global existence result, which is
mandatory for the proof of (4). More precisely we achieve

Proposition 5. Let be d ≥ 4, assume that (2) and (3) are satisfied. Then
for all f ∈ H1

x there exists a unique global solution u ∈ C(R;H1
x) to (1) and

such that

‖u‖L∞

t H1
x
. ‖f‖H1

x
.

Proof. We will perform a contraction argument. Namely, let the integral
operator associated to (1) be defined for all f ∈ H1

x as

Tf (u) = et∆
A
x f + k

∫ t

0
e(t−τ)∆A

x

(
[| · |d−γ ∗ |u|2]u

)
(τ) dτ.

One has to show that there exist a T = T
(
‖f‖H1

x

)
> 0 and a unique

u(t, x) ∈ L∞
T H

1
x

satisfying the property
Tf (u(t)) = u(t), (10)
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for any t ∈ (−T, T ). For the aim of simplicity, we shall divide the proof into
four different steps.

Step One: For any u ∈ H1
x, there exist T = T

(
‖f‖H1

x

)
> 0 and R = R

(
‖f‖H1

x

)
>

0 such that

Tf (BL∞

T ′
H1

x
(0, R)) ⊂ BL∞

T ′
H1

x
(0, R),

for any T ′ < T.

By the classical Hardy-Littlewood-Sobolev inequality in combination with
(6) and (7), we have

‖Tf (u)‖L∞

T L2
x
+ ‖∇xTf(u)‖L∞

T L2
x

. ‖Tf (u)‖L∞

T
L2
x
+ ‖∇A

x Tf(u)‖L∞

T
L2
x

. ‖f‖H1
x
+ T‖[| · |d−γ ∗ |u|2]u‖L∞

T H1
x

. ‖f‖H1
x
+ T

∥∥∥[| · |d−γ ∗ |u|2]
∥∥∥
L∞

T L∞

x

‖u‖L∞

T H1
x

+T
∥∥∥[| · |d−γ ∗ |u|2]

∥∥∥
L∞

T H
1, 2d

d−γ
x

‖u‖
L∞

T L
2d
γ
x

. ‖f‖H1
x
+ T‖u‖2

L∞

T
Ḣ

d−γ
2

x

‖u‖L∞

T H1
x
+ T

∥∥|u|2
∥∥
L∞

T H
1, 2d

d+γ
x

‖u‖
L∞

T L
2d
γ
x

. ‖f‖H1
x
+ T‖u‖2

L∞

T Ḣ
d−γ
2

x

‖u‖L∞

T H1
x
+ T‖u‖L∞

T H1
x
‖u‖2

L∞

T L
2d
γ
x

. ‖f‖H1
x
+ T‖u‖2

L∞

T
Ḣ

d−γ
2

x

‖u‖L∞

T H1
x
. ‖f‖H1

x
+ TR3.

Once we choose R and T such that

‖f‖H1
x
=
R

2
, CTR3 ≤

R

2
,

we complete the proof of the step.

Step Two: Let T,R > 0 be as in the previous step, then there exists T =
T
(
‖f‖H1

x

)
< T such that Tf is a contraction on BL∞

T
H1

x
(0, R), equipped with the

norm ‖.‖L∞

T
L2
x
.

Given any v1, v2 ∈ BL∞

T H1
x
(0, R) we get the bounds

‖Tfv1 − Tfv2‖L∞

T L2
x

. T
∥∥∥[| · |d−γ ∗ |v1|

2]v1 − [| · |d−γ ∗ |v2|
2]v2

∥∥∥
L∞

T L2
x
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. T
∥∥∥[| · |d−γ ∗ |v1|

2](v1 − v2)
∥∥∥
L∞

T L2
x

+T
∥∥∥[| · |d−γ ∗ (|v1|

2 − |v2|
2)]v2

∥∥∥
L∞

T
L2
x

. T‖v1‖
2

L∞

T H
d−γ
2

x

‖v1 − v2‖L∞

T L2
x

+T
∥∥∥[| · |d−γ ∗ (|v1|

2 − |v2|
2)]
∥∥∥
L∞

T L

2d
d−γ
x

‖v2‖
L∞

T L
2d
γ
x

. T

(
R2‖v1 − v2‖L∞

T L2
x
+R‖v1 + v2‖

L∞

T L
2d
γ
x

‖v1 − v2‖L∞

T L2
x

)

. TR2‖v1 − v2‖L∞

T L2
x
.

Then we arrive at

‖Tfv1 − Tfv2‖L∞

T L2
x
. TR2‖v1 − v2‖L∞

T L2
x
.

The upper inequality says that Tf is a contraction on BL∞

T H1
x
(0, R) if T is suit-

ably small.

Step Three: The solution exists and is unique in L∞
T
H1

x, where T is as in

the above step.
We are in a position to show existence and uniqueness of the solution by

using the contraction principle to the map Tf defined on the complete metric
space BL∞

T
H1

x
(0, R), equipped with the topology induced by ‖.‖L∞

T
L2
x
.

Step Four: The solution can be extended globally.
It is easy to see that the conservation laws (8) lead then to the global well-

posedness for (1).

4. Morawetz identities and inequalities

We introduce also some further notations. Given a function f ∈ H1(Rd;C), we
denote by

mf (t, x) := |f(t, x)|2, jAf (t, x) := Im
[
f(t, x)∇A

x f(t, x)
]
, (11)

the mass density and the momentum density, respectively. Our first contribu-
tion reads then as;
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Lemma 6. Let be d ≥ 1 and u ∈ C(R;H1
x) be a global solution to (1) with

radial initial data f ∈ H1
x such that (2) and (3) are satisfied. Moreover, let be

φ = φ(x) : Rd → R a sufficiently regular and decaying function, and denote by

V (t) :=

∫

Rd

φ(x)mu(t, x) dx.

Then the following identities hold:

V̇ (t) =

∫

Rd

φ(x)ṁu(t, x) dx = 2

∫

Rd

jAu (t, x) · ∇xφ(x) dx (12)

and

V̈ (t) =

∫

Rd

φ(x)m̈u(t, x) dx = −

∫

Rd

∆2
xφ(x)|u(t, x)|

2 dx

+4

∫

Rd

∇A
x u(t, x)D

2
xφ(x) · ∇

A
x u(t, x) dx

−4Im

∫

Rd

∇xφ(x) · B(x)∇A
x u(t, x) dx

−2

∫

Rd

∇xφ(x) · ∇x

[
|x|−(d−γ) ∗ |u(t, x)|2

]
|u(t, x)|2 dx,

(13)

where D2
xφ ∈ Md×d(R) is the Hessian matrix of φ and ∆2

xφ = ∆x(∆xφ) the

Bi-Laplacian operator.

Proof. We prove the identities for a smooth rapidly decreasing solution
u = u(t, x), letting the general case u ∈ C(R;H1

x) to a density argument. The
proof of (12) can be found in [7]. We give details for obtaining (13) and drop
the variable t for simplicity. An integration by parts and (1) give

2∂t

∫

Rd

jAu (x) · ∇xφ(x) dx

= 2Re

∫

Rd

i∂tu(x)
(
∆xφ(x)ū(x) + 2∇xφ(x) · ∇A

x u(x)
)
dx

= 2Re

∫

Rd

(
−∆A

x u(x)
) (

∆xφ(x)ū(x) + 2∇xφ(x) · ∇A
x u(x)

)
dx

+2Re

∫

Rd

[|x|−(d−γ) ∗ |u(x)|2]u(x)∆xφ(x)ū(x) dx

+4Re

∫

Rd

[|x|−(d−γ) ∗ |u(x)|2]u(x)∇xφ(x) · ∇A
x u(x) dx

(14)
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with γ̃ = d−γ. We have the following identity for the linear terms (see Theorem
1.2 in [7]),

2Re

∫

Rd

(
−∆A

x u(x)
) (

∆xφ(x)ū(x) + 2∇xφ(x) · ∇A
x u(x)

)
dx

= −

∫

Rd

∆2
xφ(x) |u(x)|

2 dx− 4Im

∫

Rd

∇xφ(x) · B(x)∇A
x u(x) dx

+4

∫

Rd

∇A
x u(x)D

2
xφ(x)∇

A
x u(x) dx.

(15)

Moreover, one gets for the nonlinear terms

2Re

∫

Rd

[|x|−(d−γ) ∗ |u(x)|2]|u(x)|2∆xφ(x) dx

+4Re

∫

Rd

[|x|−(d−γ) ∗ |u(x)|2]u(x)∇xφ(x) · ∇A
x u(x) dx

= 2Re

∫

Rd

[|x|−(d−γ) ∗ |u(x)|2]|u(x)|2∆xφ(x) dx

+4Re

∫

Rd

[|x|−(d−γ) ∗ |u(x)|2]u(x)∇xφ(x) · ∇xu(x) dx

= 2Re

∫

Rd

[|x|−(d−γ) ∗ |u(x)|2]|u(x)|2∆xφ(x) dx

+2Re

∫

Rd

[|x|−(d−γ) ∗ |u(x)|2]∇xφ(x) · ∇x |u(x)|
2 dx.

Then, by an integration by parts of the second term in the last line above, one
retrieves

2Re

∫

Rd

[|x|−(d−γ) ∗ |u(x)|2]|u(x)|2∆xφ(x) dx

+4Re

∫

Rd

[|x|−(d−γ) ∗ |u(x)|2]u(x)∇xφ(x) · ∇A
x u(x) dx

= −2

∫

Rd

∇xφ(x) · ∇x

[
|x|−(d−γ) ∗ |u(x)|2

]
|u(x)|2 dx.

(16)

Combining now identities (15) and (16), we arrive finally at (13).

4.1. A localized Morawetz inequality

At this point we can prove the following
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Lemma 7. Assume d ≥ 4 and let u ∈ C(R;H1
x) be a global solution to

(1) with radial initial data f ∈ H1
x such that (2) and (3) are satisfied. Then it

holds that

∫

Rd

1

|x|3
|u(t, x)|2 dx . V̇ (t). (17)

Proof. We choose ψ = ψ(x) = |x|. This gives

∇xψ =
x

|x|
, ∆xψ =

d− 1

|x|
, ∆2

xψ = −
(d− 1)(d − 3)

|x|3
, (18)

if d ≥ 4. By the Morawetz identity one obtains then the following

2∂t

∫

Rd

jAu (t, x) · ∇xφ(x) dx = −2

∫

Rd

∫

Rd

∆2
xφ(x)mu(t, x) dx

−4Im

∫

Rd

∇xφ(x) ·B(x)∇A
x u(t, x) dx

+4

∫

Rd

∇A
x u(t, x)D

2
xφ(x)∇

A
x u(t, x) dx

+(d− γ)

∫

Rd

∫

Rd

1

|x− z|d−γ+2
|u(t, x)|2|u(t, z)|2K(x, z) dxdz,

(19)

with

K(x, z) = (x− z) ·

(
x

|x|
−

z

|z|

)
= (|x||y| − x · y)

(
1

|x|
+

1

|y|

)
≥ 0. (20)

We can discard the last term on the l.h.s of (19). Let us focus now on the linear
terms in (19), for which we will follow the approach of [7]. Notice that, with
this choice of the multiplier φ(x), we have

∇A
x u(t, x)D

2φ(x)∇A
x u(t, x) =

|∇τ
Au(t, x)|

2

|x|
, (21)

(see identity (3.9) in [7]) where ∇τ
A is defined as

∇τ
Au(t, x) = ∇A

x u(t, x)−

(
∇A

x u(t, x) ·
x

|x|

)
x

|x|
.
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Thus, having in mind (18), we get the following identity

−2

∫

Rd

∫

Rd

∆2
xφ(x)mu(t, x) dx

−4Im

∫

Rd

∇xφ(x) ·B(x)∇A
x u(t, x) dx

+4

∫

Rd

∇A
x u(t, x)D

2
xφ(x)∇

A
x u(t, x) dx

= 4

∫

Rd

|∇τ
Au(t, x)|

2

|x|
dx+ (d− 1)(d − 3)

∫

Rd

|u(t, x)|2

|x|3
dx

+4Im

∫

Rd

u(t, x)
x

|x|
B(x) · ∇A

x u(t, x) dx.

(22)

We have the estimate

−

∣∣∣∣Im
∫

Rd

u(t, x)
x

|x|
B(x) · ∇A

x u(t, x) dx

∣∣∣∣

≥ −

(∫

Rd

|u(t, x)|2

|x|3
dx

) 1

2
(∫

Rd

|x|2 |xB(x)|2 |∇τ
Au(t, x)|

2 dx

) 1

2

≥ −C∗

(∫

Rd

|u(t, x)|2

|x|3
dx

) 1

2

(∫

Rd

|∇τ
Au(t, x)|

2

|x|
dx

) 1

2

,

(23)

with

C∗ =

√
2

3
(d− 1)(d − 3).

As a result, the r.h.s. of (22) can be bounded as

4

∫

Rd

|∇τ
Au(t, x)|

2

|x|
dx+ (d− 1)(d − 3)

∫

Rd

|u(t, x)|2

|x|3
dx

+4Im

∫

Rd

u(t, x)
x

|x|
B(x) · ∇A

x u(t, x) dx

≥ 4

∫

Rd

|∇τ
Au(t, x)|

2

|x|
dx+ (d− 1)(d − 3)

∫

Rd

|u(t, x)|2

|x|3
dx

−4C̃

(∫

Rd

|u(t, x)|2

|x|3
dx

) 1

2

(∫

Rd

|∇τ
Au(t, x)|

2

|x|
dx

) 1

2

> 0.

(24)
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Notice also that the previous inequality guarantees that

4

∫

Rd

|∇τ
Au(t, x)|

2

|x|
dx+ (d− 1)(d − 3)

∫

Rd

|u(t, x)|2

|x|3
dx

+4Im

∫

Rd

u(t, x)
x

|x|
B(x) · ∇A

x u(t, x) dx

> η(d − 1)(d− 3)

∫

Rd

|u(t, x)|2

|x|3
dx,

(25)

for some η > 0. The above bound in combination with (19), (20) and (22) gives
the proof of (17).

We have the following corollary, that is a consequence of (17).

Corollary 8. Let u ∈ C(R;H1
x) be a global solution to (1) with radial

initial data f ∈ H1
x such that (2) and (3) are satisfied. Moreover, let be

Qd
x̃(r) = x̃+ [−r, r]d, with r > 0 and x̃ ∈ R

d. Hence one gets,

∫

R

∫

Qd
x̃(r)

1

|x|3
|u(t, x)|2 dxdt <∞. (26)

Proof. By integrating (17) with ψ(x) as in (18) w.r.t. the time variable on
the interval J = [t1, t2], with t1, t2 ∈ R, one arrives at

2

[∫

Rd

jAu (t, x) · ∇xψ(x) dx

]t=t2

t=t1

+

∫ t2

t1

∫

Rd

1

|x|3
|u(t, x)|2 dxdt &

∫ t2

t1

∫

Qd
x̃(r)

1

|x|3
|u(t, x)|2 dxdydt.

By applying the Cauchy-Schwartz inequality and the Proposition 3, we have
also

[∫

Rd

jAu (t, x) · ∇
A
xψ(x, y) dx

]t=t2

t=t1

. ‖f‖2H1
x
<∞, (27)

since the H1
x-norm is a conserved quantity. In the end, we get (26) once t1 →

−∞, t2 → ∞.
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5. The decay of solutions

In this section we prove the main Theorem 1.

Proof. It is sufficient to prove the property (4) for a suitable 2 < q < 2d
d−2 ,

because the thesis for the general case follows by the conservation laws (8) and
interpolation. More precisely it is enough to show that

lim
t→±∞

‖u(t, x)‖
L
2+ 4

d
x

= 0. (28)

Then the property (4) follows for all 2 < q < 2d
d−2 by combining (28) with

sup
t∈R

‖u(t, x)‖H1
x
<∞. (29)

We recall the following localized Gagliardo-Nirenberg inequality (see [17])

‖ϕ‖
2d+4

d

L
2d+4

d
x

≤ C

(
sup
x∈Rd

‖ϕ‖L2(Qx(1))

) 4

d

‖ϕ‖2H1
x
, (30)

where Qd
x(r) = x+[−1, 1]d. Next, assume by contradiction that (28) is not true,

then by (29) and by (30) we deduce the existence of a sequence (tn, xn) ∈ R×R
d

with |tn| → ∞ and ǫ0 > 0 such that

inf
n

‖u(tn, x)‖
2
L2(Qxn(1))

= ǫ20. (31)

For simplicity we can assume that tn → ∞ because the case tn → −∞ can be
treated by a similar argument. Notice that by (12) in conjunction with (29) we
get

sup
n,t

∣∣∣∣
d

dt

∫
χ(x− xn)|u(t, x)|

2 dx

∣∣∣∣ <∞,

where χ(x) is a smooth and non-negative cut-off function, s.t. χ(x) = 1 for
x ∈ Q0(1) = [−1, 1]d and χ(x) = 0 for x /∈ Q0(2) = [−2, 2]d. Consequently, by
the Fundamental Theorem of calculus we infer

∣∣∣∣
∫

Rd

χ(x− xn)|u(σ, x)|
2 dx−

∫

Rd

χ(x− xn)|u(t, x)|
2 dx

∣∣∣∣ ≤ C̃|t− σ|, (32)

for a C̃ > 0 which is independent form n. By combining this fact with (31) and
the geometric properties of χ, we get the existence of T > 0 such that

inf
n

(
inf

t∈(tn,tn+T )
‖u(t, x)‖2L2(Qxn(2))

)
& ǫ21, (33)
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for some ǫ1 > 0, which implies, by Hölder inequality,

inf
n

(
inf

t∈(tn,tn+T )
‖u(t, x)‖2L∞(Qxn(2))

)
& ǫ21. (34)

Observe that the previous bound (34) guarantees, in combination with the
radial inequality (5), that |xn| . 1 for all n. Observe also that since tn → ∞
we can assume (via subsequence) that the intervals (tn, tn + T ) are disjoint. In
particular we have, for d ≥ 4,

∑

n

Tǫ21 .
∑

n

∫ tn+T

tn

∫

Qd
xn

(2)
|u(t, x)|2 dxdt (35)

.

∫

R

sup
x̃∈Rd

∫

Qd
x̃(2)

1

|x|3
|u(t, x)|2 dxdt, (36)

consequently we get a contradiction because the left hand side is divergent and
the right hand side is bounded by (26).

Remark 9. We underline once again the fact that the assumptions (2),
(3) made on the operator ∇A

x and the function A(x) are less stringent than the
one imposed in [7], [5] and [4]. This is due to the fact that our well-posedness
analysis is based only on the energy estimate for (1). We are not using any
Strichartz estimates here, forcing to the constraint d− 2 ≤ γ < d. The obstacle
here is that the multipliers utilized in the aforementioned papers are not well
suited to handle a non-local nonlinearity, because their application can not
guarantee the non-negativity of the last term in (19). Such aspect determines
also the radial assumption we made on the initial data. A second problem is the
equivalence of norm result of the Proposition 3, valid only in the L2 framework.
We confide to overcome all this issues and shed light on the lower regularity
scenario d− 4 ≤ γ < d− 2 in a forthcoming paper.

Remark 10. Note that by (9), Young inequality and Gronwall’s inequal-
ity, one can acquire the following

‖u(t)‖H1
x
. ‖f‖H1

x
eKt.

with K > 0 depending on the L2 size of f and E(f). Then, the Sobolev
embedding and interpolation with the conservation of mass in (8) lead to

‖u(t)‖Lr
x
. eθKt,

with 0 < θ < 1 and 2 < q ≤ 2d
d−2 , which is not enough to guarantee a behavior

like the one unveiled by (4) in Theorem 1.
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