TOPICS ON THE RESOLVENT OF
NON-SELF-ADJOINT ELLIPTIC DIFFERENTIAL OPERATORS

Abstract

Let $\Omega \subset R^{n}$ be a bounded domain with smooth boundary $\partial\Omega \in C^{\infty}$. In this paper, we consider the linear operator

\begin{displaymath}(Pu)(x)=-\sum\limits_{i,j=1}^{n}{\frac{\partial }{\partial {{...
...}_{ij}}(x)Q(x)\frac{\partial u(x)}{\partial {{x}_{i}}} \right),\end{displaymath}

in the space $H_{\ell}=L^{2}(\Omega)^{\ell}=L^{2}(\Omega)
\times \cdots \times L^{2}(\Omega)$ ($\ell$-times) associated with the noncoercive bilinear form that defined by

\begin{displaymath}{\cal P}[u,v]={{\sum\nolimits_{i,j=1}^{n}{\int_{\Omega }{\lef...
...rtial {{x}_{j}}} \right\rangle }}}_{{{\mathbf{C}}^{\ell }}}}dx.\end{displaymath}

In view of our ealier paper (see [10]), let the conditions made on the weighted function $\omega(x)$ be sufficiently more general than [10]. In this paper we investigate the resolvent of the operator $P$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 5
Year: 2021

DOI: 10.12732/ijam.v34i5.3

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] K.Kh. Boimatov, A.G. Kostyuchenko, Distribution of eigenvalues of second-order non-selfadjoint differential operators, Vest. Mosk. Gos. Univ., Ser. I, Mat. Mekh., 45, No 3 (1990), 24-31 (In Russian).
  2. [2] K.Kh. Boimatov, A.G. Kostychenko, The spectral asymptotics of nonselfadjoint elliptic systems of differential operators in bounded domains, Matem. Sbornik, 181, No 12, 1990, 1678-1693 (Russian); English transl. in Math. USSR Sbornik, 71 (1992), No 2, 517-531.
  3. [3] K.Kh. Boimatov, Asymptotics of the spectrum of an elliptic differential operator in the degenerate case, Dokl. Akad. Nauk SSSR, 243, No 6 (1978), 1369-1372 (In Russian).
  4. [4] K.Kh. Boimatov, K. Seddighi, On some spectra properties of ordieary differential operators generated by noncoercive forms, Dokl. Akad. Nauk. Rossyi, 1996 (In Russian).
  5. [5] K.Kh. Boimatov, Spectral asymptotics of pseudodifferential operators, Dokl. Akad. Nauk SSSR, 311, No 1 (1990), 14-18; Dokl. Math., 41, No 2 (1990), 196-200 (In Russian).
  6. [6] I.C. Gokhberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, American Mathematical Society, Providence (1969).
  7. [7] T. Kato, Perturbation Theory for Linear Operators, Springer, New York (1966).
  8. [8] M.A. Naymark, Linear Differential Operators, Nauka Publ., Moscow (1969) (In Russian).
  9. [9] A. Sameripour, K. Seddighi, Distribution of eigenvalues of nonself-adjoint elliptic systems degenerate on the domain boundary, Mat. Zametki, 61, No 3 (1997), 463-467; Math. Notes, 61, No 3 (1997), 379-384; doi:10.4213/mzm1524 (In Russian).
  10. [10] A. Sameripour, K. Seddighi, On the spectral properties of generalized non-selfadjoint elliptic systems of differential operatorsdegenerated on the boundary of domain, Bull. Iranian Math. Soc., 24, No 1 (1998), 15-32.
  11. [11] A.A. Shkalikov, Theorems of Tauberian type on the distribution of zeros of holomorphic functions, Mat. Sb. (N.S.), 123 (165), No 3 (1984), 317-347; Math. USSR-Sb., 51, No 2 (1985) 315-344 (In Russian).
  12. [12] R. Alizadeh, A. Sameripour, Spectral properties and distribution of eigenvalues of non-self-adjoint elliptic differential operators, International Journal of Apllied Mathematics, 34, No 1 (2021), 205-216; DOI:10.12732/ijam.v34i1.11.