THREE-LAYER HELE-SHAW DISPLACEMENT
WITH AN INTERMEDIATE NON-NEWTONIAN FLUID

Abstract

We study the displacement of two Stokes immiscible fluids in a porous medium, approximated by the Hele-Shaw horizontal model. An intermediate non-Newtonian polymer-solute, whose viscosity is depending on the velocity, is considered between the initial fluids. The linear stability problem of this three-layer displacement does not make sense. If the intermediate viscosity depends on velocity and on the polymer concentration, we can obtain a minimization of the Saffman-Taylor instability.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 4
Year: 2021

DOI: 10.12732/ijam.v34i4.6

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] D. Bonn, H. Kellay, M. Brunlich, M. Amar, J. Meunier, Viscous fingering in complex fluids, Physica A: Statistical Mechanics and its Applications, 220, No 1-2 (1995), 60-73; doi: 10.1016/0378-4371(95)00114-M.
  2. [2] D. Bonn, H. Kellay, M. Amar, J. Meunier, Viscous finger widening with surfactants and polymers. Physical Review Letters, 75, No 11 (1995), 2132- 2135; doi: 10.1103/PhysRevLett.75.2132.
  3. [3] C. Carasso and G. Pa¸sa, An optimal viscosity profile in the secondary oil recovery, Mod. Math. et Analyse Num´erique, 32, No 2 (1998), 211-221; id=M2AN-1998-32-2-211-0.
  4. [4] P. Daripa and G. Pasa, Stabilizing effect of diffusion in enhanced oil recovery and three-layer Hele-Shaw flows with viscosity gradient, Transp. in Porous Media, 70, No 1 (2007), 11-23; doi: 10.1007/s11242-007-9122-7.
  5. [5] P. Daripa and G. Pasa, On diffusive slowdown in three-layers Hele-Shaw flows, Quarterly of Appl. Math., LXVIII, No 33 (2010), 591-606; doi: 10.1090/S0033-569X-2010-01174-3. THREE-LAYER HELE-SHAW DISPLACEMENT... 679
  6. [6] S.B. Gorell and G.M. Homsy, A theory of the optimal policy of oil recovery by secondary displacement process, SIAM J. Appl. Math., 43, No 1 (1983), 79-98; doi: 10.1137/0143007.
  7. [7] S.B. Gorell and G.M. Homsy, A theory for the most stable variable viscosity profile in graded mobility displacement process, AIChE Journal, 31, No 9 (1985), 1598-1503; doi: 10.1002/aic.690310912.
  8. [8] L. Kondic, P. Palffy-Muhoray, and M.J. Shelley, Models of nonNewtonian Hele-Shaw flow, Phys. Rev. E, 54 No 5 (1996), 4536-4539; doi: 10.1103/physreve.54r4536.
  9. [9] R. Niu, H. Zheng, B. Zhang, Navier-Stokes equations the half-space in variable exponent spaces of Clifford-valued functions, Electron. J. Differential Equations, 2017, No 98 (2017), 1-21; doi: 10.1186/s13661-015-0291-y.
  10. [10] G. Pasa and O. Titaud, A class of viscosity profiles for oil displacement in porous media or Hele-Shaw cell, with Olivier Titaud, Transp. in Porous Media, 58, No 3 (2005), 269-286; doi: 10.1007/s11242-004-0773-3.
  11. [11] G. Pasa, Stability analysis of diffusive displacement in three-layer HeleShaw cell or porous medium, Transport in Porous Media, 85, No 1 (2010), 317-332; doi: 10.1007/s11242-010-9564-1.
  12. [12] G. Pasa, n the displacement of two immiscible Oldroyd-B fluids in a Hele-Shaw cell, Ann. Univ. Ferrara, 65, No 2 (2019), 337-359; doi: 10.1007/s11565-019-00320-7.
  13. [13] G. Pasa, A paradox in Hele-Shaw displacements, Ann. Univ. Ferrara, 66, No 1 (2020), 99-111; doi: 10.1007/s11565-020-00339-1.
  14. [14] G. Pasa, The multi-layer Hele-Shaw model with constant viscosity fluids can not minimize the Saffman-Taylor instability, Internaional Journal of Applied Mathematics, 33, No 4 (2020), 697-708; doi: 10.12732/ijam.v33i4.13.
  15. [15] P.G. Saffman and G.I. Taylor, The penetration of a fluid in a porous medium or Helle-Shaw cell containing a more viscous fluid, Proc. Roy. Soc. A, 245, No 1242 (1958), 312-329; doi: 10.1098/rspa.1958.0085.
  16. [16] S.D.R. Wilson, The Taylor-Saffman problem for a non-Newtonian liquid, J. Fluid Mech. 220 (1990), 413-425; doi: 10.1017/S0022112090003329.