We study the displacement of two Stokes immiscible fluids
in a porous medium, approximated by the Hele-Shaw horizontal model.
An intermediate non-Newtonian polymer-solute, whose viscosity is depending
on the velocity, is considered between the initial fluids.
The linear stability problem of this three-layer displacement does not make sense.
If the intermediate viscosity depends on velocity and on the polymer concentration, we can
obtain a minimization of the Saffman-Taylor instability.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] D. Bonn, H. Kellay, M. Brunlich, M. Amar, J. Meunier, Viscous fingering
in complex fluids, Physica A: Statistical Mechanics and its Applications,
220, No 1-2 (1995), 60-73; doi: 10.1016/0378-4371(95)00114-M.
[2] D. Bonn, H. Kellay, M. Amar, J. Meunier, Viscous finger widening with
surfactants and polymers. Physical Review Letters, 75, No 11 (1995), 2132-
2135; doi: 10.1103/PhysRevLett.75.2132.
[3] C. Carasso and G. Pa¸sa, An optimal viscosity profile in the secondary oil
recovery, Mod. Math. et Analyse Num´erique, 32, No 2 (1998), 211-221;
id=M2AN-1998-32-2-211-0.
[4] P. Daripa and G. Pasa, Stabilizing effect of diffusion in enhanced oil recovery and three-layer Hele-Shaw flows with viscosity gradient, Transp. in
Porous Media, 70, No 1 (2007), 11-23; doi: 10.1007/s11242-007-9122-7.
[5] P. Daripa and G. Pasa, On diffusive slowdown in three-layers Hele-Shaw
flows, Quarterly of Appl. Math., LXVIII, No 33 (2010), 591-606; doi:
10.1090/S0033-569X-2010-01174-3.
THREE-LAYER HELE-SHAW DISPLACEMENT... 679
[6] S.B. Gorell and G.M. Homsy, A theory of the optimal policy of oil recovery
by secondary displacement process, SIAM J. Appl. Math., 43, No 1 (1983),
79-98; doi: 10.1137/0143007.
[7] S.B. Gorell and G.M. Homsy, A theory for the most stable variable viscosity
profile in graded mobility displacement process, AIChE Journal, 31, No 9
(1985), 1598-1503; doi: 10.1002/aic.690310912.
[8] L. Kondic, P. Palffy-Muhoray, and M.J. Shelley, Models of nonNewtonian Hele-Shaw flow, Phys. Rev. E, 54 No 5 (1996), 4536-4539; doi:
10.1103/physreve.54r4536.
[9] R. Niu, H. Zheng, B. Zhang, Navier-Stokes equations the half-space in variable exponent spaces of Clifford-valued functions, Electron. J. Differential
Equations, 2017, No 98 (2017), 1-21; doi: 10.1186/s13661-015-0291-y.
[10] G. Pasa and O. Titaud, A class of viscosity profiles for oil displacement in
porous media or Hele-Shaw cell, with Olivier Titaud, Transp. in Porous
Media, 58, No 3 (2005), 269-286; doi: 10.1007/s11242-004-0773-3.
[11] G. Pasa, Stability analysis of diffusive displacement in three-layer HeleShaw cell or porous medium, Transport in Porous Media, 85, No 1 (2010),
317-332; doi: 10.1007/s11242-010-9564-1.
[12] G. Pasa, n the displacement of two immiscible Oldroyd-B fluids in a
Hele-Shaw cell, Ann. Univ. Ferrara, 65, No 2 (2019), 337-359; doi:
10.1007/s11565-019-00320-7.
[13] G. Pasa, A paradox in Hele-Shaw displacements, Ann. Univ. Ferrara, 66,
No 1 (2020), 99-111; doi: 10.1007/s11565-020-00339-1.
[14] G. Pasa, The multi-layer Hele-Shaw model with constant viscosity
fluids can not minimize the Saffman-Taylor instability, Internaional
Journal of Applied Mathematics, 33, No 4 (2020), 697-708; doi:
10.12732/ijam.v33i4.13.
[15] P.G. Saffman and G.I. Taylor, The penetration of a fluid in a porous
medium or Helle-Shaw cell containing a more viscous fluid, Proc. Roy.
Soc. A, 245, No 1242 (1958), 312-329; doi: 10.1098/rspa.1958.0085.
[16] S.D.R. Wilson, The Taylor-Saffman problem for a non-Newtonian liquid,
J. Fluid Mech. 220 (1990), 413-425; doi: 10.1017/S0022112090003329.