SOME CRITERIA OF BOUNDEDNESS OF L-INDEX
IN A DIRECTION FOR SLICE HOLOMORPHIC
FUNCTIONS IN THE UNIT BALL

Abstract

Let $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ be a fixed direction and $\mathbf{L}: \mathbb{B}^n\to\mathbb{R}_+$ be a positive continuous function such that $L(z)>\frac{\beta\vert\mathbf{b}\vert}{1-\vert z\vert},$ where $\beta>1$ is some constant. We consider slice holomorphic functions of several complex variables in the unit ball, i.e. we study functions which are analytic in intersection of every slice $\{z^0+t\mathbf{b}: t\in\mathbb{C}\}$ with the unit ball $\mathbb{B}^n=\{z\in\mathbb{C}^n: \ \vert z\vert:=\sqrt{\vert z\vert _1^2+\ldots+\vert z_n\vert^2}<1\}$ for any $z^0\in\mathbb{B}^n$. For functions from this class we prove some criteria of boundedness of $L$-index in the direction describing local behavior of maximum modulus, minimum modulus of the slice holomorphic function and providing estimates of logarithmic derivative and distribution of zeros. Moreover, we obtain an analog of logarithmic criterion. Note that the hypothesis on holomorphy in one direction together with the hypothesis on joint continuity do not imply holomorphy in whole $n$-dimensional unit ball.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 4
Year: 2021

DOI: 10.12732/ijam.v34i4.13

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. Bandura, M. Martsinkiv, O. Skaskiv, Slice holomorphic functions in the unit ball having a bounded L-index in direction, Axioms, 10, No 1 (2021), Article ID 4; doi: 10.3390/axioms10010004.
  2. [2] A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some directional differential equations with bounded L-index in the same direction, Demonstr. Math., 52, No 1 (2019), 482–489; doi: 10.1515/dema2019-0043.
  3. [3] A. Bandura, O. Skaskiv, Slice holomorphic functions in several variables with bounded L-index in direction, Axioms, 8, No 3 (2019), Article ID 88; doi: 10.3390/axioms8030088.
  4. [4] A.I. Bandura, O.B. Skaskiv, Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables, J. Math. Sci., 244, No 1 (2020), 1-21; doi: 10.1007/s10958-019-04600-7.
  5. [5] A.I. Bandura, Some weaker sufficient conditions of L-index boundedness in direction for functions analytic in the unit ball, Carpathian Math. Publ., 11, No 1 (2019), 14-25; doi:10.15330/cmp.11.1.14-25.
  6. [6] A. Bandura, O. Skaskiv, Sufficient conditions of boundedness of Lindex and analog of Hayman’s Theorem for analytic functions in a ball, Stud. Univ. Babe¸s-Bolyai Math., 63, No 4 (2018), 483-501; doi:10.24193/subbmath.2018.4.06.
  7. [7] A. Bandura, O. Skaskiv, Functions analytic in the unit ball having bounded L-index in a direction, Rocky Mountain J. Math., 49, No 4 (2019), 10631092; doi: 10.1216/RMJ-2019-49-4-1063.
  8. [8] A.I. Bandura, Some improvements of criteria of L-index boundedness in direction, Mat. Stud., 47, No 1 (2017), 27-32; doi: 10.15330/ms.47.1.27-32.
  9. [9] M.T. Bordulyak, M.M. Sheremeta, On the existence of entire functions of bounded l-index and l-regular growth, Ukrainian Math. J., 48, No 9 (1996), 1322-1340; doi: 10.1007/BF02595355.
  10. [10] G.H. Fricke, Functions of bounded index and their logarithmic derivatives, Math. Ann., 206 (1973), 215-223.
  11. [11] G.H. Fricke, Entire functions of locally slow growth, J. Anal. Math., 28, No 1 (1975), 101-122.
  12. [12] A.D. Kuzyk, M.N. Sheremeta, On entire functions, satisfying linear differential equations, Diff. Equations, 26, No 10 (1990), 1716-1722.
  13. [13] F. Nuray, Bounded index and four dimensional summability methods, Novi Sad J. Math., 49 (2019), 73-85; doi:10.30755/NSJOM.08285.
  14. [14] F. Nuray, R.F. Patterson, Vector-valued bivariate entire functions of bounded index satisfying a system of differential equations, Mat. Stud., 49, No 1 (2018), 67-74 (2018); doi: 10.15330/ms.49.1.67-74.
  15. [15] M.N. Sheremeta, A.D. Kuzyk, Logarithmic derivative and zeros of an entire function of bounded l-index, Sib. Math. J., 33, No 2 (1992), 304-312; doi: 10.1007/BF00971102.
  16. [16] M. Sheremeta, Analytic Functions of Bounded Index, VNTL Publishers, Lviv (1999).
  17. [17] M.N. Sheremeta, An l-index and an l-distribution of the values of entire functions, Soviet Math. (Iz. VUZ), 34 No 2 (1990), 115-117.
  18. [18] M.M. Sheremeta, Generalization of the Fricke theorem on entire functions of finite index, Ukrainian Math. J., 48, No 3 (1996), 460-466; doi: 10.1007/BF02378535.
  19. [19] M.M. Sheremeta, M.T. Bordulyak, Boundedness of the l-index of LaguerrePolya entire functions, Ukr. Math. J., 55, No 1 (2003), 112-125; doi: 10.1023/A:1025076720052.