SOME CRITERIA OF BOUNDEDNESS OF L-INDEX
IN A DIRECTION FOR SLICE HOLOMORPHIC
FUNCTIONS IN THE UNIT BALL
Andriy Bandura1, Lyubov Shegda2,
Oleh Skaskiv2, Liana Smolovyk4 1,2,4Department of Advanced Mathematics
Ivano-Frankivsk National Technical University
of Oil and Gas
15 Karpatska str., Ivano-Frankivsk - 76019, UKRAINE 3Department of Mechanics and Mathematics
Ivan Franko National University of Lviv
1 Universytetska str., Lviv - 79000, UKRAINE
Let
be a fixed direction
and
be a positive continuous function such that
where is some constant.
We consider slice holomorphic functions of several complex variables in the unit ball, i.e.
we study functions which are analytic in intersection of every slice
with the unit ball
for any
. For functions from this class
we prove some criteria of boundedness of -index in the direction describing
local behavior of maximum modulus, minimum modulus of the slice holomorphic function
and providing estimates of logarithmic derivative and distribution of zeros.
Moreover, we obtain an analog of logarithmic criterion.
Note that the hypothesis on holomorphy in one direction together with the hypothesis on joint continuity do not imply
holomorphy in whole -dimensional unit ball.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] A. Bandura, M. Martsinkiv, O. Skaskiv, Slice holomorphic functions in the
unit ball having a bounded L-index in direction, Axioms, 10, No 1 (2021),
Article ID 4; doi: 10.3390/axioms10010004.
[2] A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some
directional differential equations with bounded L-index in the same direction, Demonstr. Math., 52, No 1 (2019), 482–489; doi: 10.1515/dema2019-0043.
[3] A. Bandura, O. Skaskiv, Slice holomorphic functions in several variables
with bounded L-index in direction, Axioms, 8, No 3 (2019), Article ID 88;
doi: 10.3390/axioms8030088.
[4] A.I. Bandura, O.B. Skaskiv, Some criteria of boundedness of the L-index
in direction for slice holomorphic functions of several complex variables, J.
Math. Sci., 244, No 1 (2020), 1-21; doi: 10.1007/s10958-019-04600-7.
[5] A.I. Bandura, Some weaker sufficient conditions of L-index boundedness
in direction for functions analytic in the unit ball, Carpathian Math. Publ.,
11, No 1 (2019), 14-25; doi:10.15330/cmp.11.1.14-25.
[6] A. Bandura, O. Skaskiv, Sufficient conditions of boundedness of Lindex and analog of Hayman’s Theorem for analytic functions in
a ball, Stud. Univ. Babe¸s-Bolyai Math., 63, No 4 (2018), 483-501;
doi:10.24193/subbmath.2018.4.06.
[7] A. Bandura, O. Skaskiv, Functions analytic in the unit ball having bounded
L-index in a direction, Rocky Mountain J. Math., 49, No 4 (2019), 10631092; doi: 10.1216/RMJ-2019-49-4-1063.
[8] A.I. Bandura, Some improvements of criteria of L-index boundedness in
direction, Mat. Stud., 47, No 1 (2017), 27-32; doi: 10.15330/ms.47.1.27-32.
[9] M.T. Bordulyak, M.M. Sheremeta, On the existence of entire functions
of bounded l-index and l-regular growth, Ukrainian Math. J., 48, No 9
(1996), 1322-1340; doi: 10.1007/BF02595355.
[10] G.H. Fricke, Functions of bounded index and their logarithmic derivatives,
Math. Ann., 206 (1973), 215-223.
[11] G.H. Fricke, Entire functions of locally slow growth, J. Anal. Math., 28,
No 1 (1975), 101-122.
[12] A.D. Kuzyk, M.N. Sheremeta, On entire functions, satisfying linear differential equations, Diff. Equations, 26, No 10 (1990), 1716-1722.
[13] F. Nuray, Bounded index and four dimensional summability methods, Novi
Sad J. Math., 49 (2019), 73-85; doi:10.30755/NSJOM.08285.
[14] F. Nuray, R.F. Patterson, Vector-valued bivariate entire functions of
bounded index satisfying a system of differential equations, Mat. Stud.,
49, No 1 (2018), 67-74 (2018); doi: 10.15330/ms.49.1.67-74.
[15] M.N. Sheremeta, A.D. Kuzyk, Logarithmic derivative and zeros of an entire
function of bounded l-index, Sib. Math. J., 33, No 2 (1992), 304-312; doi:
10.1007/BF00971102.
[16] M. Sheremeta, Analytic Functions of Bounded Index, VNTL Publishers,
Lviv (1999).
[17] M.N. Sheremeta, An l-index and an l-distribution of the values of entire
functions, Soviet Math. (Iz. VUZ), 34 No 2 (1990), 115-117.
[18] M.M. Sheremeta, Generalization of the Fricke theorem on entire functions of finite index, Ukrainian Math. J., 48, No 3 (1996), 460-466; doi:
10.1007/BF02378535.
[19] M.M. Sheremeta, M.T. Bordulyak, Boundedness of the l-index of LaguerrePolya entire functions, Ukr. Math. J., 55, No 1 (2003), 112-125; doi:
10.1023/A:1025076720052.