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Abstract: Let b ∈ C
n \ {0} be a fixed direction and L : B

n → R+ be

a positive continuous function such that L(z) > β|b|
1−|z| , where β > 1 is some

constant. We consider slice holomorphic functions of several complex variables
in the unit ball, i.e. we study functions which are analytic in intersection of
every slice {z0 + tb : t ∈ C} with the unit ball B

n = {z ∈ C
n : |z| :=√

|z|21 + . . .+ |zn|2 < 1} for any z0 ∈ B
n. For functions from this class we

prove some criteria of boundedness of L-index in the direction describing local
behavior of maximum modulus, minimum modulus of the slice holomorphic
function and providing estimates of logarithmic derivative and distribution of
zeros. Moreover, we obtain an analog of logarithmic criterion. Note that the
hypothesis on holomorphy in one direction together with the hypothesis on joint
continuity do not imply holomorphy in whole n-dimensional unit ball.
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1. Introduction

The paper is an extension of previous work [1]. There it was introduced a
concept of L-index boundedness in direction for slice holomorphic functions in
the unit ball. Also there was deduced some criterion of L-index boundedness
in direction describing a local behavior of functions from this class. Here we
continue these investigations and apply this criterion to deduce more useful cri-
teria of L-index boundedness in direction. Among them, there is an logarithmic
criterion, an estimate of minimum modulus and an estimate of maximum mod-
ulus on a circle obtained by a slice in the unit ball. It should be note that the
logarithmic criteria in the case of slice entire functions [2] have applications in
analytic theory of differential equations. In general, the concept of bounded
index has different applications in value distribution theory [17], summability
methods theory [13] and analytic theory of system of differential equations [14].

Let us introduce some notations from [1]. Let R+ = (0,+∞), R∗
+ = [0,+∞),

0 = (0, . . . , 0), b = (b1, . . . , bn) ∈ C
n \ {0} be a given direciton, Bn = {z ∈ C

n :
|z| < 1}, D = {z ∈ C : |z| < 1}, L : B

n → R+ be a continuous function such
that, for all z ∈ B

n

L(z) >
β|b|

1− |z|
, β = const > 1. (1)

For a given z ∈ B
n, we denote Sz = {t ∈ C : z + tb ∈ B

n}. Clearly, D = B
1.

Let F : Bn → C be an analytic function. The slice functions on Sz for a
fixed z0 ∈ B

n we will denote as gz0(t) = F (z0 + tb) and lz0(t) = L(z0 + tb) for
t ∈ Sz.

Let H̃b(B
n) be the class of functions which are holomorphic on every slices

{z0 + tb : t ∈ Sz0} for each z0 ∈ B
n and let Hb(B

n) be the class of functions
from H̃b(B

n) which are joint continuous.

The notation ∂bF (z) stands for the derivative of the function gz(t) at the

point 0, i.e. for every p ∈ N ∂p
b
F (z) = g

(p)
z (0), where gz(t) = F (z + tb)

is an analytic function of complex variable t ∈ Sz for a given z ∈ C
n. In

this research, we will often call this derivative as directional derivative because
if F is an analytic function in B

n then the derivatives of the function gz(t)
matches with directional derivatives of the function F. Together the hypothesis
on joint continuity and the hypothesis on holomorphy in one direction do not
imply holomorphy in whole n-dimensional unit ball. There were presented some
examples to demonstrate it [1] and [3].

A function F ∈ Hn
b
is said [1] to be of bounded L-index in the direction b,
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if there exists m0 ∈ Z+ such that for all m ∈ Z+ and each z ∈ C
n inequality

|∂m
b
F (z)|

m!Lm(z)
≤ max

0≤k≤m0

|∂k
b
F (z)|

k!Lk(z)
, (2)

is true. The least such integer number m0, obeying (2), is called the L-index
in the direction b of the function F and is denoted by Nb(F,L,B

n). If such
m0 does not exist then we put Nb(F,L) = ∞, and the function F is called of
unbounded L-index in the direction b in this case. If L(z) ≡ 1 then the function
F is said to be of bounded index in the direction b and Nb(F ) = Nb(F, 1) is
called the index in the direction b. Let l : D → R+ be a continuous function
such that l(z) > β

1−|z| . For n = 1, b = 1, L(z) ≡ l(z) (z ∈ D) the inequality (2)
defines an analytic function in the unit disc of bounded l-index with the l-index
N(F, l) ≡ N1(F, l) (see [16]). Let Nb(F,L, z

0) stands for the L-index in the
direction b of the function F at the point z0, i.e., it is the least integer m0, for
which inequality (2) is satisfied at the point z = z0. By analogy, the notation
N(f, l, z0) is defined if n = 1, i.e. in the case of functions of one variable.

Note that the positivity and continuity of the function L are weak restric-
tions to deduce constructive results. Thus, we assume additional restrictions
by the function L.

Let us denote

λb(η) =

= sup
z∈Bn

sup
t1,t2∈Sz

{
L(z + t1b)

L(z + t2b)
: |t1 − t2|≤

η

min{L(z+t1b), L(z+t2b)}

}
.

By Qb(B
n), we denote a class of positive continuous functions L : Bn → R+,

satisfying the condition

∀η ∈ [0;β] : λb(η) < +∞. (3)

For a positive continuous function l(t), t ∈ D, and η > 0 we define λ(η) ≡
λb
1 (η) in the cases when b = 1, n = 1, L ≡ l. Let Q ≡ Q1

1 be a class of positive
continuous functions l(t), t ∈ D, obeying the condition 0 < λ(η) < +∞ for all
η ∈ [0;β].

We need the following statements from [1].

Proposition 1 ([1]). Let L ∈ Qb(B
n), 1

β
< θ1 ≤ θ2 < +∞, θ1L(z) ≤

L∗(z) ≤ θ2L(z). A function F ∈ H̃b(B
n) is of bounded L∗-index in the direction

b if and only if F is of bounded L-index in the direction b.
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Proposition 2. Let L ∈ Qb(B
n), m ∈ C \ {0}. A function F ∈ H̃b(B

n) is
of a bounded L-index in the direction b ∈ C

n if and only if F (z) is of a bounded
L-index in the direction mb.

Theorem 3 ([1]). Let L ∈ Qb(B
n). A function F ∈ H̃b(B

n) is of bounded
L-index in the direction b if and only if for each η ∈ (0;β], there exist n0 =
n0(η) ∈ Z+ and P1 = P1(η) ≥ 1 such that, for every z ∈ B

n, there exists
k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, and

max

{∣∣∣∂k0
b
F (z + tb)

∣∣∣ : |t| ≤
η

L(z)

}
≤ P1

∣∣∣∂k0
b
F (z)

∣∣∣ . (4)

2. Estimate of maximum modulus

by minimum modulus

Using Theorem 3, we will prove the next criterion of L-index boundedness in
direction. Similar results was firstly deduced by Fricke [11] for entire functions
bounded index. Further it was generalized for various classes of holomorphic
functions [15, 6].

Theorem 4. Let L ∈ Qb(B
n). A function F ∈ H̃b(B

n) has bounded
L-index in a direction b ∈ C

n \ {0} if and only if for any r1 and any r2 with
0 < r1 < r2 ≤ β, there exists number P1 = P1(r1, r2) ≥ 1 such that for each
z0 ∈ B

n

max
{
|F (z0 + tb)| : |t|=r2/L(z

0)
}

≤ P1 max
{
|F (z0+tb)| : |t|=r1/L(z0)

}
.

Proof. Our proof is based on the proof of appropriate theorem for slice
entire functions of bounded L-index in direction [4] and for analytic functions
in the unit ball [7].

Necessity. Let Nb(F,L,B
n) < +∞. On the contrary, we assume that there

exist numbers r1 and r2, 0 < r1 < r2 ≤ β, such that for every P∗ ≥ 1 there
exist z∗ = z∗(P∗) ∈ B

n, for which the following inequality is valid

max
{
|F (z∗ + tb)| : |t| = r2/L(z

∗)
}

> P∗ max
{
|F (z∗ + tb)| : |t| = r1/L(z

∗)
}
. (5)
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By Theorem 3 there exist n0 = n0(r2) ∈ Z+ and P0 = P0(r2) ≥ 1 such that
for every z∗ ∈ B

n and some k0 = k0(z
∗) ∈ Z+, 0 ≤ k0 ≤ n0, one has

max
{∣∣∣∂k0

b
F (z∗ + tb)

∣∣∣ : |t| = r2/L(z
∗)
}
≤ P0|∂

k0
b
F (z∗)|. (6)

We remark that for k0 = 0 the proof of necessity is obvious because (6) yields
max

{
|F (z∗+ tb)| : |t| = r2/L(z

∗)
}
≤ P0|F (z∗)| ≤ P0 max

{
|F (z∗+ tb)| : |t| =

r1/L(z
∗)
}
.

Suppose that k0 > 0. Put

P∗ = n0!

(
r2
r1

)n0
(
P0 +

r1
r2 − r1

)
+ 1. (7)

Let t0 ∈ Sz∗ be such that |t0| =
r1

L(z∗) and

|F (z∗ + t0b)| = max

{
|F (z∗ + tb)| : |t| =

r1
L(z∗)

}
> 0,

and t0j ∈ Sz∗ , |t0j | = r2/L(z
∗), be such that |∂j

b
F (z∗ + t0jb)| = max{|∂j

b
F (z∗ + tb)| :

|t|= r2/L(z
∗)}, j ∈ Z+. In the case |F (z∗+t0b)| = 0 by the uniqueness theorem

for all t ∈ Sz∗ we obtain F (z∗+ tb) ≡ 0. However, it contradicts inequality (5).
By Cauchy’s inequality we have

|∂j
b
F (z∗)|

j!
≤

(
L(z∗)

r1

)j

|F (z∗ + t0b)|, j ∈ Z+, (8)

∣∣∣∂j
b
F (z∗ + t0jb)− ∂j

b
F (z∗)

∣∣∣ =
∣∣∣∣
∫ t0j

0
∂j+1
b

F (z∗ + tb) dt

∣∣∣∣

≤
∣∣∣∂j+1

b
F (z∗ + t0(j+1)b)

∣∣∣
r2

L(z∗)
. (9)

From (8) and (9) we have

|∂j+1
b

F (z∗+t0(j+1)b)| ≥
L(z∗)

r2

{
|∂j

b
F (z∗+t0jb)|−|∂j

b
F (z∗)|

}

≥
L(z∗+t∗b)

r2

∣∣∣∂j
b
F (z∗ + t0jb)

∣∣∣−
j!Lj+1(z∗)

r2(r1)j
|F (z∗ + t0b)|,

where j ∈ Z+. Hence, for k0 ≥ 1 we get

|∂k0
b
F (z∗ + t0k0b)| ≥

L(z∗)

r2
|∂k0−1

b
F (z∗ + t0(k0−1)b)|
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−
(k0−1)!Lk0(z∗)

r2(r1)k0−1
|F (z∗+t0b)|≥ . . .≥

Lk0(z∗)

(r2)k0
|F (z∗+t00b)|

−

(
0!

(r2)k0
+

1!

(r2)k0−1r1
+ . . .+

(k0−1)!

r2(r1)k0−1

)
Lk0(z∗)|F (z∗+t0b)|

=
Lk0(z∗)

(r2)k0
|F (z∗ + t0b)|


 |F (z∗ + t00b)|

|F (z∗ + t0b)|
−

k0−1∑

j=0

j!

(
r2
r1

)j


 . (10)

In view of (5) we have |F (z∗ + t00b)|/|F (z∗ + t0b)| > P∗. Besides, this inequal-
ity holds

k0−1∑

j=0

j!

(
r2
r1

)j

≤ k0!

(
(r2/r1)

k0 − 1

r2/r1 − 1

)
≤ n0!

r1
r2 − r1

(
r2
r1

)n0

.

Applying (7), we obtain

|F (z∗+t00b)|

|F (z∗+t0b)|
−

k0−1∑

j=0

j!
rj2

rj1
>P∗−

n0!r1
r2 − r1

(
r2
r1

)n0

=n0!

(
r2
r1

)n0

P0 + 1.

It follows from (10), (6) and (8) that

∣∣∣∂k0
b
F (z∗+t0k0b)

∣∣∣>
Lk0(z∗)

(r2)k0

(
P∗ − n0!

r1
r2−r1

(
r2
r1

)n0
)(

r1
L(z∗)

)k0

×
|∂k0

b
F (z∗)|

k0!
≥

(
r1
r2

)n0
(
P∗−n0!

r1
r2−r1

(
r2
r1

)n0
)

|∂k0
b
F (z∗+t0k0b)|

n0!P0
.

Hence, P∗ < n0!
(
r2
r1

)n0
(
P0 +

r1
r2−r1

)
which contradicts (7).

Sufficiency. We choose any two numbers r1 ∈ (0, 1) and r2 ∈ (1, β). For a
given z0 ∈ B

n we expand the function gz0(t) = F (z0 + tb) in a power series in
the disc

{
t : |t| ≤ β/L(z0)

}
⊂ Sz0 F (z0+tb)=

∑∞
m=0 bm(z0)tm, where bm(z0) =

∂m
b
F (z0)/m!. For r ≤

β

L(z0)
we denote

Mb(r, z
0, F ) = max{|F (z0 + tb)| : |t| = r},

µb(r, z
0, F ) = max{|bm(z0)|rm : m ≥ 0},

νb(r, z
0, F ) = max{|bm(z0)|rm : |bm(z0)|rm = µb(r, z

0, F )}.



SOME CRITERIA OF BOUNDEDNESS OF L-INDEX... 781

By Cauchy’s inequality µb(r, z
0, F )≤Mb(r, z

0, F ). But for r = 1/L(z0) we
have

Mb(r1r, z
0, F )≤

∞∑

m=0

|bm(z0)|rmrm1 ≤µb(r, z
0, F )

∞∑

m=0

rm1 =
µb(r, z

0, F )

1− r1
.

Since νb(r, z
0, F ) is monotone in r, we deduce

lnµb(r2r, z
0, F )− lnµb(r, z

0, F ) =

∫ r2r

r

νb(t, z
0, F )

t
dt

≥ νb(r, z
0, F ) ln r2.

Hence,

νb(r, z
0, F ) ≤

1

ln r2
(lnµb(r2r, z

0, F )− lnµb(r, z
0, F ))

≤
1

ln r2
{lnMb(r2r, z

0, F )− ln((1 − r1)Mb(r1r, z
0, F ))}

= −
ln(1− r1)

ln r2
+

1

ln r2
{lnMb(r2r, z

0, F )− lnMb(r1r, z
0, F ))}. (11)

Let Nb(F,L, z
0) be the L-index in the direction b of the function F at the

point z0. It is obvious that

Nb(F,L, z
0) ≤ νb(1/L(z

0), z0, F ) = νb(r, z
0, F ).

However, inequality (4) can be written in the following form

Mb

(
r2

L(z0)
, z0, F

)
≤ P1(r1, r2)Mb

(
r1

L(z0)
, z0, F

)
.

Thus, from (11) we obtain Nb(z
0, L, F ) ≤ − ln(1−r1)

ln r2
+ lnP1(r1,r2)

ln r2
for every z0 ∈

C
n, i.e. Nb(F,L) ≤ − ln(1−r1)

ln r2
+ lnP1(r1,r2)

ln r2
. Theorem 4 is proved.

In view of proof of sufficiency in Theorem 4 the following lemma is valid.

Lemma 5. Let L ∈ Qb(B
n), F ∈ H̃b(B

n). If there exist numbers r1 and
r2, 0 < r1 < 1 < r2 ≤ β, and P1 ≥ 1 such that for every z0 ∈ B

n inequality (4)
holds then the function F is of bounded L-index in the direction b.

We can relax sufficient conditions of Lemma 5, replacing the condition 0 <
r1 < 1 < r2 ≤ β by 0 < r1 < r2 < +∞.
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Theorem 6. Let L ∈ Qb(B
n) and F ∈ H̃b(B

n). If there exist r1 and r2,
0 < r1 < r2 ≤ β, and P1 ≥ 1 such that for all z0 ∈ B

n inequality (4) is satisfied
then the function F is of bounded L-index in the direction b.

Proof. Our proof is based on idea of Kuzyk and Sheremeta [12]. They
proposed this method to investigate the l-index boundedness of entire solutions
of linear differential equations. Later their idea was applied for entire functions
of bounded L-index in the direction [8].

Inequality (4) for 0 < r1 < r2 < β implies

max

{
|F (z0 + tb)| : |t| =

2r2
r1 + r2

r1 + r2
2L(z0)

}

≤ P1 max

{
|F (z0 + tb)| : |t| =

2r1
r1 + r2

r1 + r2
2L(z0)

}
.

Putting L∗(z) = 2L(z)
r1+r2

, we obtain

max

{
|F (z0 + tb)| : |t| =

2r2
(r1 + r2)L∗(z0)

}

≤ P1 max

{
|F (z0 + tb)| : |t| =

2r1
(r1 + r2)L∗(z0)

}
, (12)

where 0 < 2r1
r1+r2

< 1 < 2r2
r1+r2

< 2β
r1+r2

. Clearly, L∗(z) = 2L(z)
r1+r2

> 2β|b|
(r1+r2)(1−|z|) ,

i.e., L∗ satisfies (1) and belongs to the class Qb(B
n) with 2β

r1+r2
instead of the

β. From the validity of inequality (12) we get that by Lemma 5 the function F
has bounded L∗-index in the direction b. And by Proposition 1 the function F
has bounded L-index in the direction b.

The following theorem gives an estimate of maximum modulus by minimum
modulus. It was firstly obtained by Fricke [11] for entire functions of bounded
index.

Theorem 7. Let L ∈ Qb(B
n). If a function F ∈ H̃b(B

n) is of bounded
L-index in the direction b then for each R, 0 < R ≤ β, there exist P2(R) ≥ 1
and η(R) ∈ (0, R) such that for every z0 ∈ C

n and some r = r(z0) ∈ [η(R), R]
the inequality holds

max{|F (z0+tb)| : |t|=r/L(z0)}≤P2min{|F (z0+tb)| : |t|=r/L(z0)}. (13)
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Proof. Our proof is based on the proof of appropriate theorem for analytic
functions in the unit ball [7].

Let Nb(F,L) = N < +∞ and R ≥ 0. We put

R0 = 1, r0 =
R

8(R + 1)
, Rj =

Rj−1

4N
rNj−1, rj =

1

8
Rj (j = 1, 2, . . . , N).

Let z0 ∈ B
n, and N0 = Nb(z

0, L, F ) be the L-index in the direction b of the
function F at the point z0, i.e. Nb(z

0, L, F ) be the least number m0, for which
inequality (2) holds with z = z0. The maximum in the right part of (2) is
attained at m0. Obviously, 0 ≤ N0 ≤ N. For z0 ∈ B

n we develop F (z0 + tb) in
series by powers t

F (z0+tb)=

∞∑

m=0

bm(z0)tm, bm(z0) =
∂m
b
F (z0)

m!
.

We put am(z0) = |bm(z0)|
Lm(z0)

=
|∂m

b
F (z0)|

m!Lm(z0)
. For any m ∈ Z+ the inequality aN0(z

0) ≥

am(z0) = R0am(z0) holds. There exists the least number n0 ∈ {0, 1, . . . , N0}
such that for all m ∈ Z+ an0(z

0) ≥ am(z0)RN0−n0 .
Thus, an0(z

0) ≥ aN0(z
0)RN0−n0 and aj(z

0) < aN0(z
0)RN0−j for j < n0, be-

cause if aj0(z
0) ≥ aN0(z

0)RN0−j0 for some j0 < n0, then aj0(z
0) ≥ am(z0)RN0−j0

for all m ∈ Z+ and it contradicts the choice of n0. In view of aj(z
0) <

aN0(z
0)RN0−j (j < n0) and am(z0) ≤ aN0(z

0) (m > n0) for t ∈ Sz0 and
|t| = 1

L(z0)
rN0−n0 we have

|F (z0 + tb)| = |bn0(z
0)tn0 +

∑

m6=n0

bm(z0)tm|

≥ |bn0(z
0)||t|n0 −

∑

m6=n0

|bm(z0)||t|m

= an0(z
0)rn0

N0−n0
−
∑

m6=0

am(z0)rmN0−n0

= an0(z
0)rn0

N0−n0
−
∑

j<n0

aj(z
0)rjN0−n0

−
∑

m>n0

am(z0)rmN0−n0

≥aN0(z
0)RN0−n0r

n0
N0−n0

∑

m>n0

aN0(z
0)rmN0−n0

≥ aN0(z
0)RN0−n0r

n0
N0−n0

− n0aN0(z
0)RN0−n0+1 −

aN0(z
0)rn0+1

N0−n0

1− rN0−n0
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= aN0(z
0)

(
RN0−n0r

n0
N0−n0

−
n0

4N
RN0−n0r

N
N0−n0

−rn0
N0−n0

rN0−n0

1− rN0−n0

)

≥ aN0(z
0)

(
RN0−n0r

n0
N0−n0

−
1

4
RN0−n0r

n0
N0−n0

−
1

4
RN0−n0r

n0
N0−n0

)

=
1

2
aN0(z

0)RN0−n0r
n0
N0−n0

. (14)

For t ∈ Sz0 we also have

|F (z0 + tb)| ≤
+∞∑

m=0

|bm(z0)||t|m =

∞∑

m=0

am(z0)rmN0−n0

≤ aN0(z
0)

+∞∑

m=0

rmN0−n0
=

aN0(z
0)

1− rN0−n0

≤
aN0(z

0)

1− 1/8
=

8

7
aN0(z

0). (15)

From (14) and (15) we obtain

max
{
|F (z0 + tb)| : |t| = rN0−n0/L(z

0)
}
≤

8

7
aN0(z

0)

≤
16

7

1

RN0−n0

r−n0
N0−n0

min

{
|F (z0 + tb)| : |t| =

rN0−n0

L(z0)

}

≤
16

7

1

RN
r−N
N min

{
|F (z0 + tb)| : |t| = rN0−n0/L(z

0)
}
,

i.e. (13) holds with P2(R) =
16

7RNrNN
, η(R) = rN =

1

8RN
and r = rN0−n0 .

Below we will prove the sufficient conditions which are partially symmetric
to necessary conditions from Theorem 7.

Theorem 8. Let L ∈ Qb(B
n), F ∈ H̃b(B

n). If there exists R ∈ (0, β/2)

(or if there exists R ∈ [β/2, β) and (∀z ∈ B
n) : L(z) > 2β|b|

1−|z|) and there exist

P2 ≥ 1, η ∈ (0, R) such that for all z0 ∈ B
n and some r = r(z0) ∈ [η,R]

inequality (13) holds, then the function F has bounded L-index in the direction
b.

Proof. Our proof is based on the proof of appropriate proposition for ana-
lytic functions of bounded L-index in direction [5]. In view of Theorem 6 we
need to show existence P1 such that for all z0 ∈ B

n

max
{
|F (z0 + tb)| : |t| = (β −R)/L(z0)

}
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≤ P1 max
{
|F (z0 + tb)| : |t| = R/L(z0)

}
. (16)

Assume that there exist R ∈ (0, β/2), P2 ≥ 1 and η ∈
(
0, R

)
such that for every

z0 ∈ B
n and some r = r(z0) ∈

[
η,R

]
we have

max
{
|F (z0 + tb)| : |t| = r/L(z0)

}

≤ P2 min
{
|F (z0 + tb)| : |t| = r/L(z0)

}
.

Denote L∗ = max
{
L(z0 + tb) : |t| ≤ β/L(z0)

}
, ρ0 = R/L(z0), ρk = ρ0 +

kη/L∗, k ∈ Z+. We obtain η
L∗

< R
L∗

≤ R
L(z0)

= β
L(z0)

− β−R
L(z0)

. Therefore, there

exists n∗ ∈ N, independent of z0 and such that ρp−1 < β−R
L(z0) ≤ ρp ≤ β

L(z0) , for

some p = p(z0) ≤ n∗. It is possible because L ∈ Qb(B
n). Ar first, one has

(
β

L(z0)
− ρ0

)
/
( η

L∗

)
=

(β −R)L∗

ηL(z0)

=
β −R

η
max

{
L(z0 + tb)

L(z0)
: |t|≤

β

L(z0)

}
≤
β −R

η
λb(β).

Therefore, n∗ =
[
β−R
η

λb(β)
]
, where [a] is an entire part of number a ∈ R. Let

|F (z0 + t∗∗k b)| = max{|F (z0 + tb)| : t ∈ ck}, ck = {t ∈ C : |t| = ρk}, and t∗k
be the intersection point of the segment [0, t∗∗k ] with the circle ck−1. Hence, for
every r > η and for each k ≤ n∗ we get the inequality |t∗∗k −t∗k| =

η
L∗

≤ r
L(z0+t∗

k
b)
.

Thus, for some r = r(z0 + t∗kb) ∈ [η,R] we deduce

|F (z0 + t∗∗k b)| ≤ max
{
|F (z0 + tb)| : |t− t∗k| = r/L(z0 + t∗kb)

}

≤ P2 min
{
|F (z0 + tb)| : |t− t∗k| = r/L(z0 + t∗kb)

}

≤ P2 min
{
|F (z0 + tb)| : |t− t∗k| = r/L(z0 + t∗kb), |t− t0|≤ρk−1

}

c ≤ P2 max{|F (z0 + tb)| : t ∈ ck−1}.

Hence,

max
{
|F (z0 + tb)| : |t| = (β −R)/L(z0)

}

≤ max{|F (z0 + tb)| : t ∈ cp} ≤ P2 max{|F (z0 + tb)| : t ∈ cp−1}

≤ . . . ≤ (P2)
pmax{|F (z0 + tb)| : t ∈ c0}

≤ (P2)
n∗

max
{
|F (z0 + tb)| : |t| = R/L(z0)

}
.

We get (16) with P1 = (P2)
n∗

. Thus, for R ∈ (0, β/2) Theorem 8 is proved.
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Now, suppose that R ∈ [β/2, β) and (∀z ∈ B
n) : L(z) > 2β|b|

1−|z| . Then in-

equality (13) can be rewritten as

max

{
|F (z0 +

t

2
· 2b)| : |t/2| =

r/2

L(z0)

}

≤ P2 min

{
|F (z0 +

t

2
· 2b)| : |t/2| =

r/2

L(z0)

}
.

Denoting t′ = t/2, one has

max

{
|F (z0 + t′ · 2b)| : |t′| =

r/2

L(z0)

}

≤ P2 min

{
|F (z0 + t′ · 2b)| : |t′| =

r/2

L(z0)

}
.

Since r ≤ R ∈ [β/2, β), we have r/2 ≤ R ∈ [β/4, β/2) ⊂ (0, β/2). Therefore, as
shown above the function F has bounded L-index in the direction 2b, but by
Lemma 2 the function is also of bounded L-index in the direction b.

3. Estimate of directional logarithmic derivative

In this section we deduce an analog of logarithmic criterion for function from
the class H̃b(B

n). The one-dimensional analog of the criterion is efficient to
investigate boundedness of l-index of infinite products [9, 19, 18]. As necessary
conditions the criterion was obtained by Fricke [11, 10] for entire functions of
bounded index.

Below we prove the criterion of L-index boundedness in direction, which
describes behavior of directional logarithmic derivative and distribution of zeros.
We need the additional denotations.

Denote

Gr(F ) := Gb

r (F ) :=
⋃

z : F (z)=0

{z + tb : |t| < r/L(z)}. (17)

By n
(
r, z0, 1/F

)
=
∑

|a0
k
|≤r 1 we denote a counting function of zeros a0k,

where a0k are zeros of the function F (z0 + tb) for a given z0 ∈ B
n.

Theorem 9. Let F ∈ H̃b(B
n), L ∈ Qb(B

n). If the function F has
bounded L-index in the direction b then
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1) for every r ∈ (0, β] there exists P = P (r) > 0 that for each z ∈ B
n\Gb

r (F )
∣∣∣∣
∂bF (z)

F (z)

∣∣∣∣ ≤ PL(z); (18)

2) for every r ∈ (0, β] there exists ñ(r) ∈ Z+ such that for each z0 ∈ B
n with

F (z0 + tb) 6≡ 0,
n
(
r/L(z0), z0, 1/F

)
≤ ñ(r). (19)

Proof. Our proof is based on the proof of appropriate proposition for ana-
lytic functions of bounded L-index in direction [7].

First, we prove that if the function F (z) is of bounded L-index in the
direction b, then for every z0 ∈ B

n\Gb
r (F ) (r ∈ (0, β]) and for every ãk =

z0 + a0kb the following inequality holds

|z0 − ãk| >
r|b|

2L(z̃0)λb
2 (z

0, r)
. (20)

On the contrary, we assume that there exist z0 ∈ B
n\Gb

r (F ) and ãk = z0+a0kb

such that |z0 − ãk| ≤
r|b|

2L(z̃0)λb
2 (z

0, r)
≤

r|b|

2L(z0)
<

r|b|

L(z0)
. Hence, |a0k| <

r
L(z0) .

But for λb
2 the following estimate holds L(ãk) ≤ λb

2

(
z0, r

)
L(z0) and |z0− ãk| =

|b| · |a0k| ≤
r|b|

2L(ãk)
, i.e. |a0k| ≤

r

2L(ãk)
. It contradicts z0 ∈ C

n\Gb
r (F ). In fact, in

(20) instead of λb
2

(
z0, r

)
we can take λb

2 (r).

We choose in Theorem 7 R =
r

2λb
2 (r)

. Then there exists P2 ≥ 1 and

η ∈ (0, R) such that for every z0 ∈ B
n and some r∗ ∈ [η,R] inequality (13)

holds with r∗ instead of r. Therefore, by Cauchy’s inequality

|∂bF (z0)|≤
L(z0)

r∗
max

{
|F (z0 + tb) : |t|=

r∗

L(z0)

}

≤ P2
L(z0)

η
min{|F (z0 + tb)| : |t|=

r∗

L(z0)
}. (21)

In view of (20) the set
{
z0 + tb : |t| ≤ r

2λb

2 (r)L(z
0)

}
does not contain zeros of

the function F (z0 + tb) for every z0 ∈ B
n\Gb

r (F ). Therefore, applying the
maximum modulus principle to 1/F , as a function of t, we have

|F (z0)| ≥ min
{
|F (z0 + tb)| : |t| = r∗/L(z0)

}
. (22)
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Inequalities (21) and (22) imply (18) with P = P2/η.
Now we prove that if F is of bounded L-index in the direction b then there

exists P3 > 0 such that for every z0 ∈ B
n (F (z0 + tb) 6≡ 0), r ∈ (0, 1]

n(r/L(z0), z0, 1/F )min
{
|F (z0+tb)| : |t|=r/L(z0)

}

≤ P3max
{
|F (z0 + tb)| : |t|=1/L(z0)

}
. (23)

By Cauchy’s inequality and Theorem 4 for all t ∈ Sz0 such that |t| = 1/L(z0)
we have

∣∣∣∂bF (z0+tb)
∣∣∣≤

L(z0)

β − 1
max

{
|F (z0)| : |θ−t|=

β − 1

L(z0)

}

≤
L(z0)

β − 1
max

{
|F (z0 + tb)| : |t| =

β

L(z0)

}

≤
P1(1, β)

β − 1
L(z0)max

{
|F (z0+tb)| : |t| =

1

L(z0)

}
. (24)

If F (z0 + tb) 6= 0 on a circle
{
t ∈ Sz0 : |t| = r/L(z0)

}
then

n

(
r

L(z0)
, z0,

1

F

)
=

∣∣∣∣
1

2πi

∫

|t|= r

L(z0)

∂bF (z0+tb)

F (z0 + tb)
dt

∣∣∣∣

≤
max

{∣∣∂bF (z0+tb)
∣∣ : |t| = r/L(z0)

}

min {|F (z0 + tb)| : |t| = r/L(z0)}

r

L(z0)
. (25)

From (24) and (25) we have

n
(
r/L(z0), z0, 1/F

)
min

{
|F (z0 + tb)| : |t| = r/L(z0)

}

≤
r

L(z0)
max

{
|∂bF (z0 + tb)| : |t| = r/L(z0)

}

≤
1

L(z0)
max

{
|∂bF (z0 + tb)| : |t|=1/L(z0)

}

≤ P1(1, β)/(β − 1)max
{
|F (z0 + tb)| : |t| = 1/L(z0)

}
.

Thus, we obtain (23) with P3 = P1(1, β)/(β−1). If the function F (z0+ tb) has

zeros on the circle
{
t ∈ Dz0

R : |t| = r/L(z0)
}
, then inequality (23) is obvious.

Now we put R = 1 in Theorem 7. Then there exists P2 = P2(1) ≥ 1 and
η ∈ (0, 1) such that for each z0 ∈ B

n and some r∗ = r∗(z0) ∈ [η, 1]

max

{
|F (z0+tb)| : |t|=

r∗

L(z0)

}
≤P2min

{
|F (z0+tb)| : |t|=

r∗

L(z0)

}
.
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Moreover, by Theorem 4 there exists P1 ≥ 1 such that for all z0 ∈ B
n

max
{
|F (z0 + tb)| : |t| = 1/L(z0)

}

≤ P1(1, η)max
{
|F (z0 + tb)| : |t| = η/L(z0)

}

≤ P1(1, η)max
{
|F (z0+tb)| : |t|=r∗/L(z0)

}

≤ P1(1, η)P2 min
{
|F (z0 + tb)| : |t|=r∗/L(z0)

}
.

Taking into account (23), we have

n

(
r∗

L(z0)
, z0,

1

F

)
min

{
|F (z0+tb)| : |t|=

r∗

L(z0)

}

≤ P3P1P2 min

{
|F (z0+tb)| : |t|=

r∗

L(z0)

}
,

i.e. n
(

r∗

L(z0)
, z0, 1

F

)
≤ P1(1, η)P2P3. Hence,

n

(
r∗

L(z0)
, z0,

1

F

)
≤ P4=P1(1, η)P2P3 =

P1(1, η)P2(1)P1(1, r + 1)

r
.

If r ∈ (0, η] then property (19) is proved.

Let r ∈ (η, β] and L∗ = max
{
L(z0 + tb) : |t| = r

L(z0)

}
. Using properties

of Qn
b
, we have L∗ ≤ λb

2 (r)L(z
0). Put ρ = η

L(z0)λb

2 (r)
, R = r

L(z0) . We can cover

every set K = {z0 + tb : |t| ≤ R} by a finite number m = m(r) of closed
sets Kj = {z0 + tb : |t − tj| ≤ ρ}, where tj ∈ K. Since η

λb

2 (r)L(z
0)

≤ η
L∗

≤
η

L(z0+tjb)
in each Kj there are at most [P4] zeros of function F (z0 + tb). Thus,

n
(

r
L(z0)

, z0, 1/F
)
≤ ñ(r) = [P4]m(r) and property (19) is proved.

By nz0(r, F ) = nb

(
r, z0, 1/F

)
:=
∑

|a0
k
|≤r 1 we denote counting function of

zeros a0k for the slice function F (z0 + tb) in the disc {t ∈ C : |t| ≤ r}. If for
a given z0 ∈ C

n and for all t ∈ C F (z0 + tb) ≡ 0, then we put nz0(r) = −1.
Denote n(r) = supz∈Cn nz(r/L(z)).

Theorem 10. Let L ∈ Qb(B
n), F ∈ H̃b(B

n), Bn \ Gb

β(F ) 6= ∅. If the
following conditions are satisfied:

1) there exists r1 ∈ (0, β/2) (either there exists r1 ∈ [β/2, β) and (∀z ∈ B
n) :

L(z) > 2β|b|
1−|z|) such that n(r1) ∈ [−1;∞);
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2) there exist r2 ∈ (0, β), P > 0 such that 2r2 · n(r1) < r1/λb(r1) and for
all z ∈ B

n\Gr2(F ) inequality (18) is true;

then the function F has bounded L-index in the direction b.

Proof. Our proof is based on the proof of appropriate proposition for ana-
lytic functions of bounded L-index in direction [5]. Suppose that conditions 1)
and 2) are true.

At first, we consider the case n(r1) ∈ {−1; 0}. Then in the best case the
function F can only identically equals zero on the complex line z∗ + tb for
some z∗ ∈ B

n, i.e., F (z∗ + tb) ≡ 0. For all points lying on such complex lines
inequality (13) is obvious.

Let z0 ∈ B
n \Gr2 . For any points t1 and t2 such that |tj | =

r2
L(z0)

, j ∈ {1, 2},
one has

ln

∣∣∣∣
F (z0 + t2b)

F (z0 + t1b)

∣∣∣∣ ≤
∫ t2

t1

∣∣∣
∂bF (z0 + tb)

F (z0 + tb)

∣∣∣|dt|

≤ P

∫ t2

t1

L(z0 + tb)|dt| ≤ Pλb (r2)L(z
0)

πr2
L(z0)

≤ πr2Pλb (r2)

(we also use that L ∈ Qb(B
n)). Hence,

max

{
|F (z0+tb)| : |t| =

r2
L(z0)

}

≤ P2 min

{
|F (z0+tb)| : |t| =

r1
L(z0)

}
,

where P2 = exp {πr2 Pλ2 (r2)} . Therefore, by Theorem 8 the function F has
bounded L-index in the direction b.

Let r1 > 0 be a such that n(r1) ∈ [1;∞) and 2n(r1)r2 < r1/λb(r1). Put
c = r1

2r2λb(r1)
− n(r1) > 0. Clearly, r2=

r1
2(n(r1)+c)λb(r1)

.

Under condition 1) each set K =
{
z0+tb : |t| ≤ r1

L(z0)

}
has no more n(r1)

zeros of the function F, where F (z0 + tb) 6≡ 0.

Under condition 2) there exists P > 0 such that |∂bF (z)
F (z) | ≤ PL(z) for every

z ∈ B
n\Gr2 , i.e., for all z ∈ K, lying outside the sets

{
z0 + tb : |t− a0k| <

r2
L(z0+a0

k
b)

}
,

where a0k ∈ K are zeros of the slice function F (z0 + tb) 6≡ 0. By definition λb

we obtain L(z0)/λb(r1) ≤ L(z0 + a0kb). Then |∂bF (z)
F (z) | ≤ PL(z) for every point

z ∈ B
n, lying outside union of the sets

c0k =

{
z0 + tb : |t− a0k| ≤

r2λb(r1)

L(z0)
=

r1
2(n(r1) + c)L(z0)

}
.
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The total sum of diameters of the sets c0k does not exceed the value r1n(r1)
(n(r1)+c)L(z0)

<

r1
L(z0)

. Hence, there exists a set c̃0 = {z0 + tb : |t| = r
L(z0)

}, where r1 min{1,c}
2(n(r1)+c) =

η < r < r1, such that, for all z ∈ c̃0 one has

∣∣∣∣
∂bF (z)
F (z)

∣∣∣∣ ≤ PL(z) ≤ Pλb(r)L(z
0) ≤

Pλb (r1) For any points z1 = z0 + t1b and z2 = z0 + t2b with c̃0 one has

ln

∣∣∣∣
F (z0 + t2b)

F (z0 + t1b)

∣∣∣∣ ≤
∫ t2

t1

∣∣∣∣
∂bF (z0 + tb)

F (z0 + tb)

∣∣∣∣|dt|

≤ Pλ2 (r1)L(z
0)

πr

L(z0)
≤ πr1 P (r2)λb (r1) .

Therefore,

max

{
|F (z0+tb)| : |t|=

r

L(z0)

}
≤P2min

{
|F (z0+tb)| : |t|=

r

L(z0)

}
, (26)

where P2 = exp {πr1 P (r2)λb (r1)} . If F (z0 + tb) ≡ 0, then inequality (26) is
obvious. By Theorem 8 the function F (z) has bounded L-index in the direction
b. Theorem 10 is proved.
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