ON BITSADZE-SAMARSKII TYPE ELLIPTIC
DIFFERENTIAL PROBLEMS ON HYPERBOLIC PLANE

Abstract

In the present article, we consider nonlocal boundary value problems (NBVP) of elliptic type on relatively compact domains in the hyperbolic plane. We establish the well- posedness of Neumann-Bitsadze-Samarskii type and also Dirichlet-Bitsadze-Samarskii type on such domains. Furthermore, we establish new coercivity inequalities for solutions of such elliptic NBVP on relatively compact domains in the hyperbolic plane with various Hölder norms.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 2
Year: 2021

DOI: 10.12732/ijam.v34i2.16

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Rhode Island (1968).
  2. [2] O.A. Ladyzhenskaya, N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968).
  3. [3] M.L. Vishik, A.D. Myshkis, O.A. Oleinik, Partial differential equations, In: Mathematics in USSR in the Last 40 Years, Fizmatgiz, Moscow (1959), 563-599.
  4. [4] S.G. Krein, Linear Differential Equations in Banach Space, Nauka, Moscow (1966).
  5. [5] A.V. Bitsadze, A.A. Samarskii, Some elementary generalizations of linear elliptic boundary value problems, Dokl. Akad. Nauk, 185 (1969), 739-740.
  6. [6] P.E. Sobolevskii, On elliptic equations in a Banach space, Differ. Uravn., 4 (1969), 1346-1348.
  7. [7] P.E. Sobolevskii, The coercive solvability of difference equations, Dokl. Akad. Nauk, 201 (1971), 1063-1066.
  8. [8] P.E. Sobolevskii, Some properties of the solutions of differential equations in fractional spaces, In: Trudy Nauchn. -Issled. Inst. Mat. Voronezh. Gos. Univ., 14 (1975), 68-74.
  9. [9] P.E. Sobolevskii, Well-posedness of difference elliptic equation, Discrete Dyn. Nat. Soc., 1 (1997), 219-231.
  10. [10] L.M. Gershteyn, P.E. Sobolevskii, Well-posedness of the general boundary value problem for the second order elliptic equations in a Banach space, Differ. Uravn., 11 (1975), 1335-1337.
  11. [11] D.V. Kapanadze, On the Bitsadze-Samarskii nonlocal boundary value problem, J. Differential Equations, 23 (1987), 543-545.
  12. [12] Ph. Clement, S. Guerre-Delabrire, On the regularity of abstract Cauchy problems and boundary value problems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 9 (1998), 245-266.
  13. [13] A. Ashyralyev, A note on the Bitsadze-Samarskii type nonlocal boundary value problem in a Banach space, J. Math. Anal. Appl., 344 (2008), 557573.
  14. [14] A. Ashyralyev, Well-posedness of the elliptic equations in a space of smooth functions, Bound. Value Probl., 2 (1989), 82-86.
  15. [15] A. Ashyralyev, On well-posedness of the nonlocal boundary value problem for elliptic equations, Numer. Funct. Anal. Optim., 24 (2003), 1-15.
  16. [16] A. Ashyralyev, E. Ozturk, On Bitsadze-Samarskii type nonlocal boundary value problems for elliptic differential and difference equations: wellposedness, Appl. Math. Comput., 219 (2012), 1093-1107.
  17. [17] A. Ashyralyev, F. Ozesenli Tetikoglu, A note on Bitsadze-Samarskii type nonlocal boundary value problems: well-posedness, Numer. Funct. Anal. Optim., 34 (2013), 939-975.
  18. [18] A. Ashyralyev, Y. Sozen, F. Hezenci, A remark on elliptic differential equations on manifold, Bull. of the Karaganda University-Mathematics Series, 99 (2020), 75-85.
  19. [19] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York (1984).
  20. [20] H. Urakawa, Geometry of Laplace-Beltrami operator on a complete Riemannian manifold, Adv. Stud. Pure Math., 22 (1993), 347-406.