ON BITSADZE-SAMARSKII TYPE ELLIPTIC
DIFFERENTIAL PROBLEMS ON HYPERBOLIC PLANE
Allaberen Ashyralyev1,2,3, Yasar Sozen4,
Fatih Hezenci5 1 Department of Mathematics, Near East University
Nicosia TRNC Mersin – 10, TURKEY 2 Peoples' Friendship University of Russia
(RUDN University), Ul Miklukho Maklaya 6
Moscow – 117198, RUSSIA 3 Institute of Mathematics and Mathematical Modeling
Almaty, KAZAKHSTAN 4 Department of Mathematics, Hacettepe University
Beytepe Ankara – 06800, TURKEY 5 Department of Mathematics, Duzce University
Konuralp Duzce – 81620, TURKEY
In the present article, we consider nonlocal boundary value problems (NBVP) of elliptic type on relatively compact domains in the hyperbolic plane. We establish the well- posedness of Neumann-Bitsadze-Samarskii type and also Dirichlet-Bitsadze-Samarskii type on such domains. Furthermore, we establish new coercivity inequalities for solutions of such elliptic NBVP on relatively compact domains in the hyperbolic plane with various Hölder norms.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society,
Rhode Island (1968).
[2] O.A. Ladyzhenskaya, N.N. Ural’tseva, Linear and Quasilinear Elliptic
Equations, Academic Press, New York (1968).
[3] M.L. Vishik, A.D. Myshkis, O.A. Oleinik, Partial differential equations, In:
Mathematics in USSR in the Last 40 Years, Fizmatgiz, Moscow (1959),
563-599.
[4] S.G. Krein, Linear Differential Equations in Banach Space, Nauka,
Moscow (1966).
[5] A.V. Bitsadze, A.A. Samarskii, Some elementary generalizations of linear
elliptic boundary value problems, Dokl. Akad. Nauk, 185 (1969), 739-740.
[6] P.E. Sobolevskii, On elliptic equations in a Banach space, Differ. Uravn.,
4 (1969), 1346-1348.
[7] P.E. Sobolevskii, The coercive solvability of difference equations, Dokl.
Akad. Nauk, 201 (1971), 1063-1066.
[8] P.E. Sobolevskii, Some properties of the solutions of differential equations
in fractional spaces, In: Trudy Nauchn. -Issled. Inst. Mat. Voronezh. Gos.
Univ., 14 (1975), 68-74.
[10] L.M. Gershteyn, P.E. Sobolevskii, Well-posedness of the general boundary
value problem for the second order elliptic equations in a Banach space,
Differ. Uravn., 11 (1975), 1335-1337.
[11] D.V. Kapanadze, On the Bitsadze-Samarskii nonlocal boundary value
problem, J. Differential Equations, 23 (1987), 543-545.
[12] Ph. Clement, S. Guerre-Delabrire, On the regularity of abstract Cauchy
problems and boundary value problems, Atti Accad. Naz. Lincei Cl. Sci.
Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 9 (1998), 245-266.
[13] A. Ashyralyev, A note on the Bitsadze-Samarskii type nonlocal boundary
value problem in a Banach space, J. Math. Anal. Appl., 344 (2008), 557573.
[14] A. Ashyralyev, Well-posedness of the elliptic equations in a space of smooth
functions, Bound. Value Probl., 2 (1989), 82-86.
[15] A. Ashyralyev, On well-posedness of the nonlocal boundary value problem
for elliptic equations, Numer. Funct. Anal. Optim., 24 (2003), 1-15.
[16] A. Ashyralyev, E. Ozturk, On Bitsadze-Samarskii type nonlocal boundary
value problems for elliptic differential and difference equations: wellposedness,
Appl. Math. Comput., 219 (2012), 1093-1107.
[17] A. Ashyralyev, F. Ozesenli Tetikoglu, A note on Bitsadze-Samarskii type
nonlocal boundary value problems: well-posedness, Numer. Funct. Anal.
Optim., 34 (2013), 939-975.
[18] A. Ashyralyev, Y. Sozen, F. Hezenci, A remark on elliptic differential equations
on manifold, Bull. of the Karaganda University-Mathematics Series,
99 (2020), 75-85.
[19] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New
York (1984).
[20] H. Urakawa, Geometry of Laplace-Beltrami operator on a complete Riemannian
manifold, Adv. Stud. Pure Math., 22 (1993), 347-406.