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1. Introduction

The well-posedness of boundary value problems for partial differential equa-
tions is well known (see, e.g. [1],[2],[3]). Moreover, the coercivity inequalities of
NBVP for partial differential equations of hyperbolic type in the Euclidean
space has been studied widely (see, e.g. [4],[5],[6],[7][8],[9],[10],[11],[12],[13],
[14],[15],[16],[17],[18] and the references therein).

In this paper, by considering differential equations on hyperbolic plane,
we prove the well-posedness of NBVP on relatively compact domains in the
hyperbolic plane with various Hölder norms. We also obtain new coercivity
estimates for the solutions of such NBVP for elliptic equations compact domains
in the hyperbolic plane with various Hölder norms.

2. Preliminary Results

In this section, we provide the basic definitions and facts about the Laplacian
on Riemannian manifolds. For further information, we refer the reader to [19],
[20] and the references therein.

A pair (M, g) is a said to be a Riemannian manifold, if M is a smooth
manifold, and for each x ∈ M 〈·, ·〉g(x) : TxM× TxM → R is a non-degenerate
symmetric positive definite bilinear form such that for all smooth vector fields

X,Y ∈ ΓC∞ (TM), x 7→ 〈X(x), Y (x)〉g(x) is smooth. Let
{

(

∂
∂x1

)

x
, . . . ,

(

∂
∂xn

)

x

}

be the corresponding basis of tangent space TxM in the local coordinates

(x1, . . . , xn). Let gij and g
ij denote

〈

(

∂
∂xi

)

x
,
(

∂
∂xj

)

x

〉

g(x)
and the entries of the

inverse matrix of (gij), respectively. The gradient operator ∇g : C∞ (M) →
ΓC∞ (TM) is defined by 〈∇gϕ,X〉g = dϕ (X) for each ϕ ∈ C∞(M), X ∈
ΓC∞ (TM). Note that the gradient ∇gϕ is equal to

∑n
i,j=1 g

ij ∂ϕ
∂xi

∂
∂xj

in local co-

ordinates (x1, . . . , xn). By the fact d (ϕ+ ψ) = dϕ+dψ for each ϕ,ψ ∈ C 1(M),
we have ∇g (ϕ+ ψ) = ∇gϕ + ∇gψ. Similarly, Leibniz property d(ϕ · ψ) =
ϕ · dψ + ψ · dϕ yields ∇g (ϕ · ψ) = ϕ · ∇gψ + ψ · ∇gϕ.

Suppose ω ∈ Ωn(M) is an n−form and X is a vector field on M. Then,
ιXω ∈ Ωn−1(M) is the (n − 1)−form defined by

ιXω (X1, . . . ,Xn−1) = ω (X,X1, . . . ,Xn−1) .

Here, X1, . . . ,Xn−1 are vector fields on the Riemaniann manifold M. By using
d(ιXω) ∈ Ωn(M), we have d (ιXω) = divω(X)ω for some number divω(X).
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The divergence operator divg : ΓC∞ (TM) → C∞(M) is defined by d (ιXωg) =
divg(X)ωg for all X ∈ ΓC∞ (TM) . Here, ωg ∈ Ωn(M) is the volume element
obtained by Rimannian metric g. Clearly, in local coordinates (x1, . . . , xn) ,
divergence is divg(X) = 1√

det g

∑n
i=1

∂
∂xi

(

bi
√
det g

)

for X =
∑n

j=1 bj
∂

∂xj
∈

ΓC∞ (TM). For X,Y ∈ ΓC∞ (TM) and ω ∈ Ωn (M), ιX+Y ω = ιXω + ιY ω.

Thus, we have divg (X + Y ) = divg (X) + divg (Y ), and also divg (ϕX) =
ϕdivgX + 〈∇gϕ,X〉g for ϕ ∈ C∞(M). ∆g = −divg ◦ ∇g is called the Laplace-
Beltrami ∆g on real-valued smooth functions C∞ (M) on (M, g). Clearly,
∆g (ϕ+ ψ) = ∆gϕ + ∆gψ and ∆g (ϕ · ψ) = ψ∆gϕ + ϕ∆gψ − 2 〈∇gϕ,∇gψ〉g
for any ϕ,ψ ∈ C∞(M). By using local coordinates (x1, . . . , xn), we have

∆g = − 1√
det g

n
∑

i,j=1

∂
∂xi

(

gij
√
det g ∂

∂xj

)

.

We consider

H
2 =

{

(x1, x2, x3) ∈ R
3, x3 > 0, | x21 + x22 − x23 = c− 1

}

,

the 2−dimensional hyperbolic plane in geodesic polar coordinates, more pre-
cisely, ξ : (0,∞) × (0, 2π) → H

2,

x1 = sinh (r) cos θ, x2 = sinh (r) sin θ, x3 = cosh (r) , (1)

where 0 < r < ∞, 0 < θ < 2π. Then, we obtain gH2 =

[

1 0

0 sinh2(r)

]

,

√

det gH2 = sinh(r), g−1
H2 =

[

1 0
0 1

sinh2(r)

]

. The Laplace-Beltrami operator

∆H2 is equal to

−1

sinh(r)

{

∂

∂r

(

a0(r, θ)
∂

∂r

)

+
∂

∂θ

(

a1(r, θ)
∂

∂θ

)}

, (2)

where a0 = sinh(r) and a1 =
1

sinh(r) .

Theorem 1 (Divergence Theorem). Let M be a Riemannian manifold
with boundary ∂M andX be a C1−vector field onM. Then,

∫

Mdivg(X) dVg =
∫

∂M 〈X, ν〉g dσg, where divg is the divergence operator on (M, g), dVg is the
natural volume element on (M, g), and ν is the unit vector normal to ∂M.

Theorem 2 (Stokes’ Theorem). If M is oriented complete Riemannian
n−manifold with boundary, α ∈ Ωn−1 (M) with compact support, and i :
∂M → M is inclusion map, then

∫

∂M i∗α =
∫

Mdα.
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These results yield the following theorem:

Theorem 3 (Green’s Theorem). Suppose (M, g) is an oriented complete
Riemannian manifold with boundary ∂M. Suppose also ψ ∈ C1

(

M
)

and ϕ ∈
C2
(

M
)

. Then,
∫

M ψ ·∆
M
φ dVg =

∫

M 〈∇gψ,∇gφ〉 dVg −
∫

∂M ψ · ∂φ
∂ν dσg. Here,

∇g is the gradient operator on the Riemannian manifold (M, g).

By using Green’s Theorem, the following theorem holds:

Theorem 4. ([19, 20]) Let (M, g) be a complete Riemannian manifold
with boundary. Then,
1. (Formal self-adjointness): 〈ψ,∆

M
φ〉L2(M,dVg)

=〈φ,∆
M
ψ〉L2(M,dVg)

, 2. (Pos-

itivity): 〈∆
M
φ, φ〉L2(M,dVg)

≥ 0, where L2(M, dVg) is Hilbert space {f : M →
R; 〈φ, φ〉L2(M,dVg)

:=
∫

M φ2(x) dVg(x) <∞}.

2.1. Neumann-Bitsadze-Samarskii Type NBVP on the Hyperbolic

Plane

Let us consider the domain Ω = ξ((a1, b1) × (a2, b2)) ⊂ H
2. Here, ξ : (0,∞) ×

(0, 2π) → H
2 denotes the geodesic polar parametrization (1), (a1, b1) ⊂ (0,∞),

and (a2, b2) ⊂ (0, 2π). We consider



























−utt(t, x) + ∆H2u(t, x) + δu(t, x) = f(t, x),
x ∈ Ω, t ∈ (0, 1),

ut(0, x) = 0, ut(1, x) =
∑p

i=1 βiut(λi, x), x ∈ Ω,
∑p

i=1 |βi| ≤ 1, 0 ≤ λ1 < · · · < λp < 1,
∂u

∂
→
n
(t, x) |x∈∂Ω= 0, 0 ≤ t ≤ 1,

(3)

where ∆H2 denotes the Laplace-Beltrami operator on the Riemannian manifold
(H2, gH2) and δ > 0. We introduce the following theorem:

Theorem 5. The solutions of problem (3) satisfy the coercivity inequality

‖utt‖Cα(L2(Ω,dVg))
+ ‖u‖

C α(W 2

2
(Ω,dVg))≤

M (δ, λp, a, a1, b1)

α (1−α) ‖f‖
Cα(L2(Ω,dVg))

.

Here, M (δ, λp, a, a1, b1) is independent of f(t, x).
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Consider problem (3) as the following Bitsadze-Samarskii type NBVP:







−Utt (t) + LU (t) = F (t), 0 ≤ t ≤ 1,
Ut(0) = 0, Ut(1) =

∑p
i=1 βiUt(λi),

∑p
i=1 |βi| ≤ 1, 0 ≤ λ1 < · · · < λp < 1

in L2(Ω, dVg) with the self-adjoint and positive definite operator L = ∆H2+δI,
where I is the identity operator.

The proof of Theorem 5 follows from the symmetry property of L, The-
orem 6 and Theorem 7 on the coercivity estimate for the solution of elliptic
differential problem in H = L2(Ω, dVg).

Theorem 6. ([17]) Suppose A is a self-adjoint positive definite operator
with dense domain D(A) in a Hilbert space H, and ϕ,ψ ∈ Eα

(

D
(

A1/2
)

,H
)

.
Then, the elliptic type differential problem







−vtt(t, x) +Av(t) = g(t), 0 < t < 1,
vt(0) = ϕ, vt(1) =

∑p
i=1 βivt (λi) + ψ,

∑p
i=1 |βi| ≤ 1, 0 ≤ λ1 < · · · < λp < 1

(4)

is well-posed in Hölder space C α (H). For the solutions of problem (4), the
coercivity estimate holds:

‖vtt‖Cα(H) + ‖Av‖
C α(H)

≤M (δ)
[∥

∥

∥A1/2ϕ
∥

∥

∥

H
+
∥

∥

∥A1/2ψ
∥

∥

∥

H

]

+
M (δ, λp)

α (1− α)
‖g‖

Cα(H) .

Theorem 7. The solutions of the elliptic differential problem

{

∆H2u(ξ(r, θ)) = ω(ξ(r, θ)), (r, θ) ∈ (a1, b1)× (a2, b2),
∂u(ξ(r,θ))

∂
→
n

= 0, (r, θ) in boundary of [a1, b1]× [a2, b2]

satisfy the coercivity estimate
n
∑

i=1

‖uθiθi‖L2(Ω,dVg)
≤M1 (a1, b1) ||w||L2(Ω,dVg).

The proof of Theorem 7 relies on the following theorem:
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Theorem 8. ([8]) Consider the solutions of the elliptic differential problem
{

Aξu(ξ) = w(ξ), ξ ∈ (α1, β1)× · · · × (αn, βn),
∂u(ξ)

∂
→
n

= 0, ξ in boundary [α1, β1]× · · · × [αn, βn].
(5)

The solutions of equation (5) satisfy the coercivity inequality
∑n

i=1 ‖uξiξi‖L2((α1,β1)×···×(αn,βn))
≤M2(a, δ)||w||L2((α1,β1)×···×(αn,βn)), whereA

ξ =
n
∑

r=1

∂
∂ξr

(

ar(ξ)
∂

∂ξr

)

+ δI, ar(ξ) ≥ a > 0, and r = 1, . . . , n.

Proof of Theorem 7. The boundary of Ω is the image ξ(r, θ) of boundary of
[a1, b1] × [a2, b2] and the interior of Ω is the image ξ(r, θ) of (a1, b1) × (a2, b2).
If u : Ω → R is so that ∂u

∂ν vanishes on the boundary of Ω, then v = u ◦
ξ : [a1, b1] × [a2, b2] → R and ∂v

∂ν vanishes on the boundary of the rectangle
[a1, b1]× [a2, b2], where ν is the outward unit normal to the boundary. Clearly,
0 < m (a1) ≤ sinh(r) ≤M (b1) , wherem (a1) = sinh(a1) andM (b1) = sinh(b1).
From Equation (2) and Theorem 8, it follows:

∫

Ω

∣

∣∆
H2
u(x)

∣

∣

2
dVg(x)

=

∫ b1

a1

∫ b2

a2

{

∂
∂r

(

sinh(r)∂u◦ξ(r,θ)∂r

)

+ ∂
∂θ

(

1
sinh(r)

∂u◦ξ(r,θ)
∂θ

)}2

sinh(r)
dθdr

≥ 1

M (a1, b1)

∫ b1

a1

∫ b2

a2

{

∂

∂r

(

sinh(r)
∂u ◦ ξ(r, θ)

∂r

)

+
∂

∂θ

(

1

sinh(r)

∂u ◦ ξ(r, θ)
∂θ

)}2

dθdr

=
1

M (a1, b1)

∥

∥

∥
A(r,θ)u ◦ ξ

∥

∥

∥

2

L2((a1,b1)×(a2,b2))

=
1

M (a1, b1)

∥

∥

∥A(r,θ)v
∥

∥

∥

2

L2((a1,b1)×(a2,b2))

≥ 1

M (a1, b1) ·M2
2 (a, δ)

(

‖vrr‖L2((a1,b1)×(a2,b2))
+ ‖vθθ‖L2((a1,b1)×(a2,b2))

)2
.

Thus, we get





∫

Ω

∣

∣∆
H2
u(x)

∣

∣

2
dVg(x)





1/2
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≥

(

‖vrr‖L2((a1,b1)×(a2,b2))
+ ‖vθθ‖L2((a1,b1)×(a2,b2))

)

√

M (a1, b1)M2(a, δ)
. (6)

Note that

‖vrr‖L2((a1,b1)×(a2,b2))
=





b1
∫

a1

b2
∫

a2

|vrr(r, θ)|2 drdθ





1/2

≥





b1
∫

a1

b2
∫

a2

|vrr(r, θ)|2
sinh(r)

M (a1, b1)
drdθ





1/2

=

(

b1
∫

a1

b2
∫

a2

|vrr(r, θ)|2 sinh(r)drdθ
)1/2

√

M (a1, b1)

=

(

b1
∫

a1

b2
∫

a2

|(u ◦ ξ)rr(r, θ)|2 sinh(r)drdθ
)1/2

√

M (a1, b1)
=

‖urr‖L2(Ω,dVg)
√

M (a1, b1)
. (7)

Similarly, we have

‖vθθ‖L2((a1,b1)×(a2,b2))
≥ 1
√

M (a1, b1)
‖uθθ‖L2(Ω,dVg)

. (8)

Equations (6), (7), and (8) yield





∫

Ω

|∆H2u(x)|2 dVg(x)





1/2

≥ 1

M (a1, b1) ·M2(a, δ)

(

‖urr‖L2(Ω,dVg)
+ ‖uθθ‖L2(Ω,dVg)

)

.

This finishes proof of Theorem 7.
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2.2. Dirichlet-Bitsadze-Samarskii Type NBVP on the Hyperbolic

Plane

We consider the mixed boundary value problem of Dirichlet-Bitsadze-Samarskii
type























−utt(t, x) + ∆H2u(t, x) + δu(t, x) = f(t, x),
x ∈ Ω, 0 < t < 1,

u(0, x) = ϕ(x), u(1, x) =
∑p

j=1 αju(λj , x) + ψ(x), x ∈ Ω,

0 < λ1 < · · · < λp < 1,
∑p

j=1 |αj | ≤ 1, 0 ≤ t ≤ 1,

u(t, x) |x∈∂Ω= 0, 0 ≤ t ≤ 1.

(9)

×(a2, b2)) ⊂ H
2 and ξ : (0,∞)×(0, 2π) → H

2 is the geodesic polar parametriza-
tion (1), (a1, b1) ⊂ (0,∞), (a2, b2) ⊂ (0, 2π). ∆H2 is the Laplace-Beltrami op-
erator on the Riemannian manifold (H2, gH2). We prove the following theorem:

Theorem 9. For the solutions of NBVP (9), the coercivity inequality
holds:

‖utt‖Cα
01
(L2(Ω,dVg))

+ ‖u‖
Cα
01(W 2

2
(Ω,dVg)) ≤M(δ, a1, b1)

[

‖ϕ‖
W 2

2
(Ω,dVg)

+ ‖ψ‖
W 2

2
(Ω,dVg)

]

+
M (δ, λ1, λp, a1, b1)

α (1− α)
‖f‖

C α
01
(L2(Ω,dVg))

.

Here, K(δ, λ1, λp) does not depend on ϕ(x), ψ(x), and f(t, x).

Consider problem (9) as the NBVP of Bitsadze-Samarskii type







−Utt (t) + LU (t) = F (t), t ∈ (0, 1),
U(0) = ϕ, U(1) =

∑p
j=1 αjU(λj) + ψ,

0 < λ1 < · · · < λp < 1,
∑p

j=1 |αj | ≤ 1
(10)

in L2(Ω, dVg
H2
) with the self-adjoint and positive definite operator L = ∆H2 +

δI. Here, ‖U‖L2(Ω,dVg
H2

) =
(∫

Ω U
2(x)dVg(x)

)1/2
, dVg

H2
is natural volume ele-

ment of H2 obtained from metric tensor gH2 , and I is the identity operator.

The proof of Theorem 9 relies on [18, Theorem 12] and the following theo-
rem:

Theorem 10. ([16]) Suppose A is a self-adjoint positive definite operator
with dense D(A) ⊂ H in a Hilbert space H and ϕ,ψ ∈ D(A). Then, the
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following boundary value problem







−vtt(t, x) +Av(t) = f(t), 0 < t < 1,
v(0) = ϕ, v(1) =

∑p
j=1αjv(λj) + ψ,

0 < λ1 < · · · < λp < 1,
∑p

j=1 |αj| ≤ 1

is well-posed in Hölder space C α
01 (H). Furthermore, for the solutions of prob-

lem, the coercivity estimate

‖vtt‖C α
01
(H) + ‖Av‖

C α
01
(H)

≤M [‖Aϕ‖H + ‖Aψ‖H ] +
M (δ, λ1, λp)

α (1− α)
‖f‖

C α
01
(H)

is valid. HereM(δ, λ1, λp) does not depend on ϕ(x), ψ(x), and f(t, x). C α
01 (H) (0 <

α < 1) is the Banach space which is the completion of smooth functions v :

[0, 1] → H with the norm ‖v‖C α
01

(H) = ‖v‖C (H)+ sup
0≤t<t+τ≤1

(1−t)α(t+τ)α‖v(t+τ)−v(t)‖H
τα

and ‖v‖
C (H) = max

0≤t≤1
‖v(t)‖H .
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