RIGHT MULTIPLIERS AND COMMUTATIVITY
OF 3-PRIME NEAR-RINGS

Abstract

In this paper we generalize some well-known results concerning a right multiplier satisfying certain differential identities on 3-prime near-rings.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 1
Year: 2021

DOI: 10.12732/ijam.v34i1.9

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M. Ashraf, S. Ali, On left multipliers and the commutativity of prime rings, Demonstratio Math., 41, No 4 (2008), 764-771; doi: 10.1515/dema-2008-0404.
  2. [2] H.E. Bell, G. Mason, On derivations in near-rings, North-Holland Math. Stud., 137 (1987), 31-35.
  3. [3] H.E. Bell, On derivations in near-rings, Vol. II. In: Nearrings, Nearfields and K-Loops, Ser. Math. Appl. 426, Hamburg (1995), Kluwer Acad. Publ., Dordrecht (1997), 191-197.
  4. [4] A. Boua, M. Achraf, Identities in 3-prime near-rings with left multipliers, J. of Algebra and Related Topics, 6, No 1 (2018), 67-77; doi: 10.22124/JART.2018.10093.1096.
  5. [5] A. Boua, A.Y. Abdelwanis, A. Chillali, Some commutativity theorems for near-rings with left multipliers, Kragujevac J. Math., 44, No 2 (2020), 205-216; doi: 10.46793/KgJMat2002.205B.
  6. [6] A. Boua, M. Ashraf, Some algebraic identities in 3-prime near-rings, Ukrainian Math. J., 72, No 1 (2020), 39-51; doi: 10.1007/s11253-020-01762-5.
  7. [7] B. Zalar, On centralizer of semiprime rings, Comment. Math. Univ. Carolinae, 32, No 4 (1991), 609-614.