International Journal of Applied Mathematics

Volume 34 No. 1 2021, 169-181

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v34i1.9

RIGHT MULTIPLIERS AND COMMUTATIVITY OF 3-PRIME NEAR-RINGS

Samir Mouhssine¹, Abdelkarim Boua² §

1,2 Sidi Mohammed Ben Abdellah University-FEZ Polydisciplinary Faculty, LSI, Taza, MOROCCO

Abstract: In this paper we generalize some well-known results concerning a right multiplier satisfying certain differential identities on 3-prime near-rings.

AMS Subject Classification: 16N60; 16W25; 16Y30

Key Words: 3-prime near-rings; right multiplier; commutativity

1. Introduction

Throughout this paper, \mathcal{N} denotes a left near-ring with multiplicative center $Z(\mathcal{N})$. From [2], a near-ring \mathcal{N} is called 3-prime if $x\mathcal{N}y=\{0\}$ implies x=0 or y=0. Recalling that \mathcal{N} is said to be 2-torsion free, if whenever 2x=0 implies x=0 for all $x\in\mathcal{N}$. A right near-ring \mathcal{N} is called zero-symmetric, if x0=0 for all $x\in\mathcal{N}$, recall that right distributive yields 0x=0. Let α and β mapfrom \mathcal{N} to \mathcal{N} . Let $x,y\in\mathcal{N}$, we write $[x,y]_{\alpha,\beta}=\alpha(x)\beta(y)-\beta(y)\alpha(x)$ and $(x\circ y)_{\alpha,\beta}=\alpha(x)\beta(y)+\beta(y)\alpha(x)$, in particular $[x,y]_{1,1}=[x,y]$ and $(x\circ y)_{1,1}=x\circ y$ in the usual sense. An additive mapping $F:\mathcal{N}\to\mathcal{N}$ is called a right (resp. left) multiplier (or centralizer), if F(xy)=xF(y) (resp.

Received: September 27, 2020

© 2021 Academic Publications

[§]Correspondence author

F(xy) = F(x)y holds for all $x, y \in \mathcal{N}$. F is called multiplier if it is both right as well as left multiplier. Several authors investigated the commutativity in prime and semi-prime rings admitting right (or left) multipliers, which satisfy appropriate algebraic conditions on suitable subset of the rings. For example, we refer the reader to [7], where more references can be found. Recently, the second author with M. Ashraf [4] proved that if a 3-prime near-ring \mathcal{N} admits a left multiplier (resp. right multiplier) $F: \mathcal{N} \to \mathcal{N}$ satisfying any one of the following properties: (i) $F([x,y]) \in Z(\mathcal{N})$, (ii) $F(x \circ y) \in Z(\mathcal{N})$, (iii) $F([x,y]) \pm (x \circ y) \in Z(\mathcal{N})$ and $(iv) F([x,y]) \pm x \circ y \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$, then \mathcal{N} is a commutative ring. In this note we intend to extend these results for 3-prime near-ring satisfying any one of the identities: (1) $[x,y]_{\alpha,\beta} \in Z(\mathcal{N})$, (2) $(x \circ y)_{\alpha,\beta} \in Z(\mathcal{N}), (3) \ H([x,y]_{\alpha,\beta}) \in Z(\mathcal{N}), (4) \ H([x,y]_{\alpha,\beta}) \pm [x,y]_{\alpha,\beta} \in$ $Z(\mathcal{N}), (5) H((x \circ y)_{\alpha,\beta}) \in Z(\mathcal{N}), (6)H((x \circ y)_{\alpha,\beta}) \pm (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N}), (7)$ $H([x,y]_{\alpha,\beta}) \pm (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N}), (8) \ H((x \circ y)_{\alpha,\beta}) \pm [x,y]_{\alpha,\beta} \in Z(\mathcal{N}), \text{ holds}$ for all $x, y \in \mathcal{N}$, where H and β nonzero right multipliers on \mathcal{N} and α is an automorphism of \mathcal{N} .

2. Some preliminaries

In this paper it is assumed that \mathcal{N} is 3-prime zero-symmetric near-ring and $\alpha: \mathcal{N} \to \mathcal{N}$ is an automorphism.

Lemma 1. ([3], Lemma 1.3 (iii)) Let \mathcal{N} be a 3-prime near-ring. If $z \in Z(\mathcal{N}) - \{0\}$ and $x \in \mathcal{N}$ such that $xz \in Z(\mathcal{N})$ or $zx \in Z(\mathcal{N})$, then $x \in Z(\mathcal{N})$.

Lemma 2. ([3], Lemma 1.3 (i)) Let \mathcal{N} be a 3-prime near-ring. If x is an element of \mathcal{N} such that $\mathcal{N}x = \{0\}$ (resp. $x\mathcal{N} = \{0\}$), then x = 0.

Lemma 3. ([3], Lemma 1.5) Let \mathcal{N} is a 3-prime near-ring. If $\mathcal{N} \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Lemma 4. Let \mathcal{N} be a near-ring and H be a right multiplier of \mathcal{N} , then:

- (a) $H I_N$ is a right multiplier.
- (b) $H + I_N$ is a right multiplier.
- (c) For each positive integer $n \geq 1$, H^n is a right multiplier.

- Proof. (a) Let $F = H I_{\mathcal{N}}$, then F(xy) = H(xy) xy = xH(y) xy = x(H(y) y) = xF(y) for all $x, y \in \mathcal{N}$. Thus $H I_{\mathcal{N}}$ is a right multiplier.
 - (b) By using similar arguments, we get the required result.
- (c) For n=1, the result is true. Let $n\geq 1$ be a fixed positive integer. Suppose that H^n is a right multiplier, then $H^{n+1}(xy)=H(H^n(xy))=H(xH^n(y))=xH^{n+1}(y)$ for all $x,y\in \mathcal{N}$. Hence, H^{n+1} is a right multiplier. So by the induction hypothesis, we conclude that for each positive integer $n\geq 1$, H^n is a right multiplier.
- **Lemma 5.** Let \mathcal{N} be a p-torsion free near-ring, where p is positive integer $p \geq 1$. If \mathcal{N} admits a nonzero right multiplier H, then:
 - (a) pH is a nonzero right multiplier;
 - (b) -pH is a nonzero right multiplier.
- Proof. (a) First we assume that H is a right multiplier. Let G = pH, then G(xy) = pH(xy) = x(pH(y)) = xG(y) for all $x, y \in \mathcal{N}$. Suppose that G = 0, then G(x) = pH(x) = 0 for all $x \in \mathcal{N}$. Using the p-torsion freeness of \mathcal{N} , we get H = 0, which is a contradiction. Consequently, pH is a nonzero right multiplier.
- (b) Using similar arguments as used in (a), we may obtain the required result.
- **Lemma 6.** Let \mathcal{N} be a 3-prime near-ring. If H is a nonzero right multiplier on \mathcal{N} such that $H(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.
- *Proof.* Assume that $H(x) \in Z(\mathcal{N})$ for all $x \in \mathcal{N}$. Putting yx in place of x, we get $yH(x) \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$. Since $H \neq 0$, by Lemma 1, we obtain $\mathcal{N} \subseteq Z(\mathcal{N})$, which forces that \mathcal{N} is a commutative ring by Lemma 3.

3. Conditions on right multipliers

Motivated by the results in [3] our objective in the present paper is to generalize them.

Theorem 7. If H and β are nonzero right multipliers on \mathcal{N} , then the following assertions are equivalent:

- (a) $[x,y]_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (b) $H([x,y]_{\alpha,\beta}) \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (c) \mathcal{N} is a commutative ring.

Proof. It is obvious that $(c) \Rightarrow (a)$ and $(c) \Rightarrow (b)$.

- $(a) \Rightarrow (c)$. We begin with the situation $[x,y]_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$. Substituting $\alpha(x)y$ for y, we have $\alpha(x)[x,y]_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$. Using Lemma 1, we get $\alpha(x) \in Z(\mathcal{N})$ or $[x,y]_{\alpha,\beta} = [\alpha(x),\beta(y)] = 0$ for all $x,y \in \mathcal{N}$. Thus $[\alpha(x),\beta(y)] = 0$ for all $x,y \in \mathcal{N}$ it follows $\beta(\mathcal{N}) \subseteq Z(\mathcal{N})$. According to Lemma 6, we conclude that \mathcal{N} is a commutative ring.
 - $(b) \Rightarrow (c)$. Assume that

$$H([x, y]_{\alpha, \beta}) \in Z(\mathcal{N}) \text{ for all } x, y \in \mathcal{N}.$$
 (1)

Putting $\alpha(x)y$ instead of y in (1), we find that $\alpha(x)H([x,y]_{\alpha,\beta}) \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$. By Lemma 1, we get $H([x,y]_{\alpha,\beta}) = 0$ or $\alpha(x) \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$, which gives $H([x,y]_{\alpha,\beta}) = 0$ for all $x,y \in \mathcal{N}$. Equivalently,

$$\beta(y)H(\alpha(x)) = \alpha(x)H \circ \beta(y) \text{ for all } x, y \in \mathcal{N}.$$
 (2)

Replacing y by ty in (2), we arrive at

$$t\beta(y)H(\alpha(x)) = \alpha(x)tH \circ \beta(y) \text{ for all } x, y, t \in \mathcal{N}.$$
 (3)

Putting $\alpha^{-1}([n,m]_{\alpha,\beta})$ in place of x in (3), we get $[n,m]_{\alpha,\beta}\mathcal{N}H \circ \beta(y) = \{0\}$ for all $y,n,m \in \mathcal{N}$. The 3-primeness of \mathcal{N} implies

$$H \circ \beta = 0$$
 or $[n, m]_{\alpha, \beta} = 0$ for all $n, m \in \mathcal{N}$.

If $H \circ \beta = 0$, then (3) becomes

$$\beta(y)H(x) = 0 \text{ for all } x, y \in \mathcal{N}.$$
 (4)

Substituting tx for x in (4), we obtain $\beta(y)\mathcal{N}H(x)=0$ for all $x,y\in\mathcal{N}$. Since \mathcal{N} is 3-prime, we get H=0 or $\beta=0$, which gives a contradiction. Hence $[n,m]_{\alpha,\beta}=0$ for all $n,m\in\mathcal{N}$. According to $(a)\Rightarrow(c)$, we conclude that \mathcal{N} is a commutative ring.

Corollary 8. If H and β are nonzero right multipliers on \mathcal{N} , then for each positive integer $n \geq 1$ such that $H^n \neq 0$ the following statements are equivalent:

- (i) $H^n([x,y]_{\alpha,\beta}) \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (ii) \mathcal{N} is a commutative ring.

Corollary 9. If H and β are nonzero right multipliers on \mathcal{N} , then for each positive integer $n \geq 1$ such that $H^n \neq \pm I_{\mathcal{N}}$ the following assertions are equivalent:

- (i) $H^n([x,y]_{\alpha,\beta}) + [x,y]_{\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{R}$;
- (ii) $H^n([x,y]_{\alpha,\beta}) [x,y]_{\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{R}$;
- (iii) \mathcal{N} is a commutative ring.

Corollary 10. ([4], Remark) If H is a nonzero right multiplier on \mathcal{N} , then the following assertions are equivalent:

- (i) $H([x,y]) \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (ii) \mathcal{N} is a commutative ring.

Theorem 11. Let \mathcal{N} be a 2-torsion free near-ring. If H and β are nonzero right multipliers on \mathcal{N} , then the following assertions are equivalent:

- (a) $(x \circ y)_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$;
- (b) $H((x \circ y)_{\alpha,\beta}) \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$;
- (c) \mathcal{N} is a commutative ring.

Proof. It is obvious that (c) implies (a) and (b).

 $(a) \Rightarrow (c)$. First we consider the case $(x \circ y)_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$. Now we substitute $\alpha(x)y$ for y, we get $\alpha(x)(x \circ y)_{\beta} \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$. So we have

$$(x \circ y)_{\alpha,\beta} = 0 \text{ or } \alpha(x) \in Z(\mathcal{N}) \text{ for all } x, y \in \mathcal{N}.$$
 (5)

Suppose there exists $\alpha(x_0) \in Z(\mathcal{N}) - \{0\}$. Using our hypothesis, we get $\alpha(x_0)(\beta(t) + \beta(t)) \in Z(\mathcal{N})$ for all $t \in \mathcal{N}$. From Lemma 1, we arrive at

$$2\beta(t) \in Z(\mathcal{N}) \text{ for all } t \in \mathcal{N} \text{ or } x_0 = 0.$$
 (6)

In view of (6), (5) becomes

$$(x \circ y)_{\alpha,\beta} = 0 \text{ for all } x, y \in \mathcal{N} \text{ or } 2\beta(t) \in Z(\mathcal{N}) \text{ for all } t \in \mathcal{N}.$$
 (7)

If $2\beta(t) \in Z(\mathcal{N})$ for all $t \in \mathcal{N}$, we conclude that \mathcal{N} is a commutative ring by Lemma 5 and Lemma 6.

If $(x \circ y)_{\alpha,\beta} = 0$ for all $x, y \in \mathcal{N}$, so $\alpha(x)\beta(y) = -\beta(y)\alpha(x)$ for all $x, y \in \mathcal{N}$. Putting xt in place of x in the above relation, we arrive at

$$\alpha(x)t\beta(y) = \alpha(x)(-\beta(y))(-t) \text{ for all } t, x, y \in \mathcal{N}.$$
 (8)

Which gives $\mathcal{N}[-\beta(y),t] = \{0\}$ for all $y,t \in \mathcal{N}$. So by Lemma 1 and Lemma 2, we find that $-\beta(y) \in Z(\mathcal{N})$ for all $y \in \mathcal{N}$. Since $-\beta$ is a nonzero right multiplier, Lemma 6 forces that \mathcal{N} is a commutative ring.

 $(b) \Rightarrow (c)$. Assume that

$$H((x \circ y)_{\alpha,\beta}) \in Z(\mathcal{N}) \text{ for all } x, y \in \mathcal{N}.$$
 (9)

Case 1: If $H \circ \beta = 0$, then (9) becomes

$$\beta(y)H(\alpha(x)) \in Z(\mathcal{N}) \text{ for all } x, y \in \mathcal{N}.$$
 (10)

Writing ty instead of y in (10), we get

$$t\beta(y)H(\alpha(x)) \in Z(\mathcal{N}) \text{ for all } x, y, t \in \mathcal{N}.$$
 (11)

Using Lemma 1, we find that

$$\beta(y)H(\alpha(x)) = 0 \text{ or } t \in Z(\mathcal{N}) \text{ for all } x, y, t \in \mathcal{N}.$$
 (12)

Suppose that $\beta(y)H(\alpha(x)) = 0$ for all $x, y \in \mathcal{N}$, by using the same technique as used previously, we get H = 0 or $\beta = 0$; a contradiction. So (12) becomes $\mathcal{N} \subseteq Z(\mathcal{N})$ which forces that \mathcal{N} is a commutative rings by Lemma 6.

Case 2: If $H \circ \beta \neq 0$. Taking $\alpha(x)y$ instead of y in (9), we get $\alpha(x)H((x \circ y)_{\alpha,\beta}) \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$. So by Lemma 1, we have

$$H((x \circ y)_{\alpha,\beta}) = 0 \text{ or } \alpha(x) \in Z(\mathcal{N}) \text{ for all } x, y \in \mathcal{N}.$$
 (13)

Suppose that there exists $x_0 \in \mathcal{N}$ such that $\alpha(x_0) \in Z(\mathcal{N}) - \{0\}$. From $H((x_0 \circ t)_{\alpha,\beta}) \in Z(\mathcal{N})$ for all $t \in \mathcal{N}$, it follows that $\alpha(x_0)(H \circ \beta(t) + H \circ \beta(t)) \in Z(\mathcal{N})$ for all $t \in \mathcal{N}$ and by Lemma 1, we obtain

$$x_0 = 0 \text{ or } 2H \circ \beta(t) \in Z(\mathcal{N}) \text{ for all } t \in \mathcal{N}.$$
 (14)

Using (14), (13) yields

$$H((x \circ y)_{\alpha,\beta}) = 0$$
 for all $x, y \in \mathcal{N}$ or $2H \circ \beta(t) \in Z(\mathcal{N})$ for all $t \in \mathcal{N}$.

If $2H(\beta(t)) \in Z(\mathcal{N})$ for all $t \in \mathcal{N}$. Since $H \circ \beta$ is a nonzero right multiplier, by Lemma 5 and Lemma 6, we conclude that \mathcal{N} is a commutative ring.

If $H((x \circ y)_{\alpha,\beta}) = 0$ for all $x, y \in \mathcal{N}$, then

$$-\beta(y)H(\alpha(x)) = \alpha(x)H \circ \beta(y) \text{ for all } x, y \in \mathcal{N}.$$
 (15)

Substituting ty for y in (15), we obtain

$$-t\beta(y)H(\alpha(x)) = \alpha(x)tH \circ \beta(y) \text{ for all } x, y, t \in \mathcal{N}.$$
 (16)

Writing $\alpha^{-1}((m \circ n)_{\alpha,\beta})$ instead of x in (16), we find that $(m \circ n)_{\alpha,\beta} \mathcal{N} H \circ \beta(y) = \{0\}$ for all $m, n, y \in \mathcal{N}$. By 3-primeness of \mathcal{N} and the fact that $H \circ \beta \neq 0$, we conclude that $(m \circ n)_{\alpha,\beta} = 0$ for all $m, n \in \mathcal{N}$. Using the same techniques as used previously, we conclude that \mathcal{N} is a commutative ring.

Corollary 12. Let \mathcal{N} be a 2-torsion free near-ring. If H and β are nonzero right multipliers on \mathcal{N} , then for each positive integer $n \geq 1$ such that $H^n \neq 0$ the following assertions are equivalent:

- (i) $H^n((x \circ y)_{\alpha,\beta}) \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$;
- (ii) \mathcal{N} is a commutative ring.

Corollary 13. Let \mathcal{N} be a 2-torsion free near-ring. If H and β are nonzero right multipliers on \mathcal{N} , then for each positive integer $n \geq 1$ such that $H^n \neq \pm I_{\mathcal{N}}$ the following assertions are equivalent:

- (a) $H^n((x \circ y)_{\alpha,\beta}) + (x \circ y)_{\beta} \in Z(\mathcal{N})$ for all $x, y \in \mathcal{R}$;
- (b) $H^n((x \circ y)_{\alpha,\beta}) (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x, y \in \mathcal{R}$;
- (c) \mathcal{N} is a commutative ring.

Corollary 14. ([4], Remark) Let \mathcal{N} be a 2-torsion free near-ring. If H is a nonzero right multiplier on \mathcal{N} , then the following assertions are equivalent:

- (a) $H(x \circ y) \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$;
- (b) \mathcal{N} is a commutative ring.

Theorem 15. Let \mathcal{N} be a 2-torsion free near-ring. If H and β are nonzero right multipliers on \mathcal{N} , then the following assertions are equivalent:

(a)
$$H([x,y]_{\alpha,\beta}) + (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N})$$
 for all $x,y \in \mathcal{N}$;

- (b) $H([x,y]_{\alpha,\beta}) (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (c) \mathcal{N} is a commutative ring.

Proof. It is clear that (c) implies (a) and (b).

 $(a) \Rightarrow (c)$. Assume that H = 0, then $(x \circ y)_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$, so \mathcal{N} is a commutative ring by Theorem 11.

Suppose that $H \neq 0$ and

$$H([x,y]_{\alpha,\beta}) + (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N}) \text{ for all } x,y \in \mathcal{N}.$$
 (17)

For $\alpha(x) = \beta(y)$, (17) becomes

$$\beta(y)\left(\beta(y) + \beta(y)\right) = \left(\beta(y)\right)^2 + \left(\beta(y)\right)^2 \in Z(\mathcal{N}) \text{ for all } y \in \mathcal{N}.$$
 (18)

Putting $\beta(y)y$ in place of y in (18) and using it, we arrive at

$$(\beta(y))^2 ((\beta(y))^2 + (\beta(y))^2) \in Z(\mathcal{N}) \ y \in \mathcal{N}.$$

Using Lemma 1, we conclude that $(\beta(y))^2 + (\beta(y))^2 = 0$ or $(\beta(y))^2 \in Z(\mathcal{N})$. Since \mathcal{N} is 2-torsion free, the above expression gives $(\beta(y))^2 \in Z(\mathcal{N})$ for all $y \in \mathcal{N}$. Putting $\beta(y)y$ in place of y in (17), we get $2x(\beta(y))^2 \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$. From Lemma 1, it follows that

$$(\beta(y))^2 = 0 \text{ or } 2x \in Z(\mathcal{N}) \text{ for all } x, y \in \mathcal{N}.$$
 (19)

Assume that $(\beta(y))^2 = 0$ for all $y \in \mathcal{N}$. Then

$$\beta(y) (\beta(y) + \beta(z))^2 = 0$$
 for all $y, z \in \mathcal{N}$.

Which means that $\beta(y)\beta(z)\beta(y)=0$ for all $y,z\in\mathcal{N}$. Replacing z by mz in the last equation we ge $\beta(y)m\beta(z)\beta(y)=0$. This yields $\beta(y)\mathcal{N}\beta(z)\beta(y)=\{0\}$ for all $y,z\in\mathcal{N}$. By 3-primeness of \mathcal{N} , we conclude that $\beta(z)\beta(y)=0$ for all $y,z\in\mathcal{N}$. Taking ny in place of y in last relation, we get $\beta(z)\mathcal{N}\beta(y)=\{0\}$ for all $y,z\in\mathcal{N}$. 3-primness of \mathcal{N} again forces that $\beta=0$; a contradiction. Thus (19) becomes $2I_{\mathcal{N}}(x)\in Z(\mathcal{N})$ for all $x\in\mathcal{N}$. Since $I_{\mathcal{N}}$ is a nonzero right multiplier, then \mathcal{N} is a commutative ring by Lemma 5 and Lemma 6.

 $(b) \Rightarrow (c)$. Assume that $H([x,y]_{\beta}) - (x \circ y)_{\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$. Arguing as in the proof of $(a) \Rightarrow (c)$, we arrive at \mathcal{N} is a commutative ring.

Corollary 16. Let \mathcal{N} be a 2-torsion free near-ring. If H and β are nonzero right multipliers on \mathcal{N} , then for each positive integer $n \geq 1$ the following assertions are equivalent:

- (a) $H^n([x,y]_{\alpha,\beta}) + (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (b) $H^n([x,y]_{\alpha,\beta}) (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (c) \mathcal{N} is a commutative ring.

Corollary 17. ([4], Remark) Let \mathcal{N} be a 2-torsion free near-ring. If H is nonzero right multiplier on \mathcal{N} , then the following assertions are equivalent:

- (a) $H([x,y]) + (x \circ y) \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$;
- (b) $H([x,y]) (x \circ y) \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$;
- (c) \mathcal{N} is a commutative ring.

Theorem 18. Let \mathcal{N} be a 2-torsion free near-ring. If H and β are nonzero right multipliers on \mathcal{N} such that $H \circ \beta \neq 0$, then the following assertions are equivalent:

- (a) $H((x \circ y)_{\alpha,\beta}) + [x,y]_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (b) $H((x \circ y)_{\alpha,\beta}) [x,y]_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (c) \mathcal{N} is a commutative ring.

Proof. It is obvious that (c) implies (a) and (b).

 $(a) \Rightarrow (c)$. Suppose that H = 0, then $[x, y]_{\alpha,\beta} \in Z(\mathcal{N})$ for all for all $x, y \in \mathcal{N}$, Hence \mathcal{N} is a commutative ring by Theorem 7.

Suppose that $H \neq 0$ and

$$H((x \circ y)_{\alpha,\beta}) + [x,y]_{\alpha,\beta} \in Z(\mathcal{N}) \text{ for all } x, y \in \mathcal{N}.$$
 (20)

Taking $\alpha(x) = \beta(y)$ in (20) we arrive at $2H((\beta(y))^2) \in Z(\mathcal{N})$ for all $y \in \mathcal{N}$. Substituting $\beta(y)y$ for y in the last expression and using it we obtain $(\beta(y))^2 (2H((\beta(y))^2)) \in Z(\mathcal{N})$ for all $y \in \mathcal{N}$. By using Lemma 1, we get

$$2H((\beta(y))^2) = 0$$
 or $(\beta(y))^2 \in Z(\mathcal{N})$ for all $y \in \mathcal{N}$.

According to 2-torsion freeness of \mathcal{N} , we conclude that

$$H((\beta(y))^2) = 0 \text{ or } (\beta(y))^2 \in Z(\mathcal{N}) \text{ for all } y \in \mathcal{N}.$$
 (21)

Suppose that there exists $y_0 \in \mathcal{N}$ such that $(\beta(y_0))^2 \in Z(\mathcal{N})$. Putting $\beta(y_0)y_0$ in place of y in (20), we arrive $(\beta(y_0))^2 (2H(\alpha(x))) \in Z(\mathcal{N})$ for all $x \in \mathcal{N}$. By using Lemma 1, we get

$$(\beta(y_0))^2 = 0 \text{ or } 2H(\alpha(x)) \in Z(\mathcal{N}) \text{ for all } x \in \mathcal{N}.$$
 (22)

In view of (22), (21) becomes

$$H((\beta(y))^2) = 0 \text{ for all } y \in \mathcal{N} \text{ or } 2H(x) \in Z(\mathcal{N}) \text{ for all } x \in \mathcal{N}.$$
 (23)

Assume that $H((\beta(y))^2) = 0$ for all $y \in \mathcal{N}$. Then

$$H\left(\beta(y)\left(\beta(y)+\beta(z)\right)^2\right)=0 \text{ for all } y,z\in\mathcal{N}.$$

Which gives $H(\beta(y))\beta(z)\beta(y)=0$ for all $y,z\in\mathcal{N}$. Replacing z by nz in the last expression, we get $H(\beta(y))n\beta(z)\beta(y)=0$ for all $n,y,z\in\mathcal{N}$ this can be written as $H(\beta(y))\mathcal{N}\beta(z)\beta(y)=\{0\}$ for all $y,z\in\mathcal{N}$. According to 3-primeness of \mathcal{N} , we get $H(\beta(y))=0$ or $\beta(z)\beta(y)=0$ for all $y,z\in\mathcal{N}$. Which implies that $\beta(z)H(\beta(y))=0$ for all $y,z\in\mathcal{N}$. Taking my in place of y in last equation, we get $\beta(z)\mathcal{N}H(\beta(y))=\{0\}$ for all $y,z\in\mathcal{N}$. Since \mathcal{N} is 3-prime, we arrive at $\beta=0$ or $H\circ\beta=0$, which implies that $H\circ\beta=0$; a contradiction. Hence (23) becomes $2H(x)\in Z(\mathcal{N})$ for all $x\in\mathcal{N}$. Consequently, \mathcal{N} is a commutative ring by Lemma 5 and Lemma 6.

Corollary 19. Let \mathcal{N} be a 2-torsion free near-ring. If H and β are nonzero right multipliers on \mathcal{N} such that $H \circ \beta \neq 0$, then for each positive integer $n \geq 1$ the following assertions are equivalent:

- (a) $H^n((x \circ y)_{\alpha,\beta}) + [x,y]_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (b) $H^n((x \circ y)_{\alpha,\beta}) [x,y]_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x,y \in \mathcal{N}$;
- (c) \mathcal{N} is a commutative ring.

Corollary 20. ([4], Remark) Let \mathcal{N} be a 2-torsion free near-ring. If H is a nonzero right multiplier on \mathcal{N} , then the following assertions are equivalent:

- (a) $H(x \circ y) + [x, y] \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$;
- (b) $H(x \circ y) [x, y] \in Z(\mathcal{N})$ for all $x, y \in \mathcal{N}$;
- (c) \mathcal{N} is a commutative ring.

The following example proves that the restriction of 3-primeness of \mathcal{N} imposed on the hypothesis of the above theorems is not superfluous.

Example 1. Suppose that S is any abelian left near-ring, $n \ge 1$ be a fixed positive integer. Let

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \mid x, y, z, 0 \in S \right\}.$$

Then \mathcal{N} is a right near-ring, which is not 3-prime. Let us define β, H and α :

$$\mathcal{N} \to \mathcal{N} \text{ as follows: } \beta \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ H \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} =$$

$$\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ and }$$

$$\alpha \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & x & x+y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}.$$

It is clear that α is an automorphism of \mathcal{N} , and β , H are nonzero right multipliers of \mathcal{N} . Moreover, for each positive integer $n \geq 1$, \mathcal{N} satisfies the conditions:

- $(i) [u, v]_{\alpha,\beta} \in Z(\mathcal{N}),$
- $(ii) (u \circ v)_{\alpha,\beta} \in Z(\mathcal{N}),$
- (iii) $H^n([u,v]_{\alpha,\beta}) \in Z(\mathcal{N}),$
- (iv) $H^n([u,v]_{\alpha,\beta}) \pm [u,v]_{\beta} \in Z(\mathcal{N}),$
- (v) $H^n((u \circ v)_{\alpha,\beta}) \in Z(\mathcal{N}),$
- (vi) $H^n((u \circ v)_{\alpha,\beta}) \pm (u \circ v)_{\alpha,\beta} \in Z(\mathcal{N}),$
- (vii) $H^n([u,v]_{\alpha,\beta}) \pm (u \circ v)_{\alpha,\beta} \in Z(\mathcal{N}),$
- (viii) $H^n((u \circ v)_{\alpha,\beta}) \pm [u,v]_{\alpha,\beta} \in Z(\mathcal{N}),$

for all $u, v \in \mathcal{N}$, but \mathcal{N} is not commutative.

The following example proves that in Theorems 15 and 18 the hypothesis that \mathcal{N} is 2-torsion free is crucial.

Example 2. Let $\mathcal{N} = M_2(Z_2)$. Then, \mathcal{N} is a non-commutative prime ring, which is not 2-torsion free. Define β, H and $\alpha : \mathcal{N} \to \mathcal{N}$ by $H = \beta = \alpha = I_{\mathcal{N}}$. It is easy to verify that α is an automorphism, and β, H are nonzero

right multipliers. Moreover, for each positive integer $n \geq 1$, \mathcal{N} satisfies the conditions:

- (i) $H^n([x,y]_{\alpha,\beta}) \pm (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N});$
- (ii) $H^n((x \circ y)_{\alpha,\beta}) \pm (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N})$, for all $x, y \in \mathcal{N}$.

The following example shows that for $n \geq 1$ the conditions:

- (i) $[x,y]_{\alpha,\beta} \in Z(\mathcal{N}),$
- (ii) $(x \circ y)_{\alpha,\beta} \in Z(\mathcal{N}),$
- (iii) $H^n([x,y]_{\alpha,\beta}) \in Z(\mathcal{N}),$
- (iv) $H^n([x,y]_{\alpha,\beta}) \pm [x,y]_{\alpha,\beta} \in Z(\mathcal{N}),$
- (v) $H^n((x \circ y)_{\alpha,\beta}) \in Z(\mathcal{N}),$
- (vi) $H^n((x \circ y)_{\alpha,\beta}) \pm (x \circ y)_{\alpha,\beta} \in Z(\mathcal{N}),$

for all $x, y \in \mathcal{N}$ are crucial.

Example 3. Let
$$\mathcal{N} = M_2(Z)$$
. Define mappings β, H and $\alpha : \mathcal{N} \to \mathcal{N}$ by: $\alpha = I_{\mathcal{N}}, \beta \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 0 & y \\ 0 & t \end{pmatrix}$ and $H \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & 0 \\ z & 0 \end{pmatrix}$.

It easy to verify that $\mathcal N$ is a non-commutative prime ring, which is 2-torsion free, α is an automorphism, and H, β are right multipliers. Moreover, for $X=\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right)$ and $Y=\left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right)$, we have:

- (i) $[X,Y]_{\alpha,\beta} \notin Z(\mathcal{N})$,
- $(ii) (X \circ Y)_{\alpha,\beta} \notin Z(\mathcal{N}),$
- (iii) $H^n([X,Y]_{\alpha,\beta}) \notin Z(\mathcal{N}),$
- (iv) $H^n([X,Y]_{\alpha,\beta}) \pm [X,Y]_{\alpha,\beta} \notin Z(\mathcal{N}),$
- (v) $H^n((X \circ Y)_{\alpha,\beta}) \notin Z(\mathcal{N}),$
- (vi) $H^n((X \circ Y)_{\alpha,\beta}) \pm (X \circ Y)_{\alpha,\beta} \notin Z(\mathcal{N}).$

References

[1] M. Ashraf, S. Ali, On left multipliers and the commutativity of prime rings, *Demonstratio Math.*, **41**, No 4 (2008), 764-771; doi: 10.1515/dema-2008-0404.

- [2] H.E. Bell, G. Mason, On derivations in near-rings, North-Holland Math. Stud., 137 (1987), 31-35.
- [3] H.E. Bell, On derivations in near-rings, Vol. II. In: Nearrings, Nearfields and K-Loops, Ser. Math. Appl. 426, Hamburg (1995), Kluwer Acad. Publ., Dordrecht (1997), 191-197.
- [4] A. Boua, M. Achraf, Identities in 3-prime near-rings with left multipliers, *J. of Algebra and Related Topics*, **6**, No 1 (2018), 67-77; doi: 10.22124/JART.2018.10093.1096.
- [5] A. Boua, A.Y. Abdelwanis, A. Chillali, Some commutativity theorems for near-rings with left multipliers, *Kragujevac J. Math.*, **44**, No 2 (2020), 205-216; doi: 10.46793/KgJMat2002.205B.
- [6] A. Boua, M. Ashraf, Some algebraic identities in 3-prime near-rings, Ukrainian Math. J., 72, No 1 (2020), 39-51; doi: 10.1007/s11253-020-01762-5.
- [7] B. Zalar, On centralizer of semiprime rings, Comment. Math. Univ. Carolinae, 32, No 4 (1991), 609-614.