A NONLOCAL p(x)\&q(x) ELLIPTIC TRANSMISSION
PROBLEM WITH DEPENDENCE ON THE GRADIENT

Abstract

In this work, we consider a nonlocal p\&q elliptic transmission problem involving nonstandard growth conditions with dependence on the gradient. Under suitable conditions, we prove the existence of weak solutions by means of an abstract result of the monotone operator theory.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 1
Year: 2021

DOI: 10.12732/ijam.v34i1.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] E. Acerbi, G.Mingione, Regularity results for stationary electro-rheological fluids, Archive for Rational Mechanics and Analysis, 164 (2002), 213-259.
  2. [2] R. Ayazoglu (Mashiyev), M. Avci, N. Thanh Chung, Existence of solutions for nonlocal problems in Orlicz-Sobolev spaces via Monotone method, Electronic J. of Mathematical Analysis and Applications, 4 (1), No 6 (2016), 63-73.
  3. [3] A. Ayoujil, M. Moussaoui, Multiplicity results for nonlocal elliptic transmission problem with variable exponent, Boletim da Sociedade Paranaense de Matem´atica, 3 (33), No 2 (2015), 185–199; doi: 10.5269/bspm.v33i2.23875.
  4. [4] M. B. Benboubker, E. Azroul, A. Barbara, Quasilinear elliptic problems with nonstandard growth, Electron. J. Differential Equations, 62 (2011), 1–16.
  5. [5] E. Cabanillas L., J. Bernui B., R.J. de la CruzM., Z. Huaringa S, Existence of slutions for a class of p(x)-Kirchhoff type equation with dependence on the gradient, Kyungpook Mathematical J. Kyungpook Nat. Univ., 58, No 3 (2018), 533-546.
  6. [6] F. Cammaroto, L. Vilasi, Existence of three solutions for a degenerate Kirchhoff–type transmission problem, Numerical Functional Analysis and Optimization, 35, No 7-9 (2014), 911-931.
  7. [7] B. Cekic, R.A. Mashiyev, Nontrivial Solution for a nonlocal elliptic transmission problem in variable exponent Sobolev spaces, Abstract and Applied Analysis 2010 (2010), Article ID 385048, 12 pp.; doi: 10.1155/2010/385048.
  8. [8] M.I.M. Copetti, J. Durany, J.R. Fern´andez, L. Poceiro, Numerical analysis and simulation of a bio-thermal model for the human foot, Applied Mathematics and Computation, 305 (2017), 103-116.
  9. [9] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. on Applied Mathematics, 66 (2006), 1383- 1406.
  10. [10] G. Dinca, P. Jebelean, Some existence results for a class of nonlinear equations involving a duality mapping, Nonlinear Analysis, 46 (2001), 347-363.
  11. [11] X.L. Fan, J.S. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk,p(x)( ), J. of Mathematical Analysis and Applications, 262 (2001), 749-760.
  12. [12] X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Analysis, 52 (2003), 1843-1852.
  13. [13] X.L. Fan, D. Zhao, On the Spaces Lp(x) and Wm,p(x), J. of Mathematical Analysis and Applications, 263 (2001), 424-446; doi: 10.1006/jmaa.2000.7617.
  14. [14] X.L. Fan, Y.Z. Zhao, Q.H. Zhang, A strong maximum principle for p(x)- Laplace equations, Chinese J. of Contemporary Mathematics, 24, No 3 (2003), 277-282.
  15. [15] G.M. Figueiredo, Existence of positive solutions for a class of p and q elliptic problems with critical growth on Rn, J. Math. Anal. Appl., 378, No 2 (2011), 507-518.
  16. [16] V.K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Analysis, 71 (2009), 3305-3321.
  17. [17] F. Li, Y. Zhang, X. Zhu, Z. Liang, Ground-state solutions to Kirchhofftype transmission problems with critical perturbation, J. of Mathematical Analysis and Applications, 482, No 2 (2020), Art. 123568.
  18. [18] T.F. Ma, J. E. Mu˜noz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Applied Mathematics Letters, 16 (2003), 243-248.
  19. [19] I. Peral, Multiplicity of solutions for the p-Laplacian, International Center for Theoretical Physics, Lecture Notes, Trieste (1997).
  20. [20] L. Wang, Y. Fan, W. Ge, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Analysis, 71 (2009), 4259–4270.
  21. [21] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Mathematics of the USSR-Izvestiya, 9 (1987), 33-66; doi: 10.1070/IM1987v029n01ABEH000958.