In this work, we consider a nonlocal p\&q elliptic transmission problem involving nonstandard growth conditions with dependence on the gradient. Under suitable conditions, we prove the existence of weak solutions by means of an abstract result of the monotone operator theory.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] E. Acerbi, G.Mingione, Regularity results for stationary electro-rheological
fluids, Archive for Rational Mechanics and Analysis, 164 (2002), 213-259.
[2] R. Ayazoglu (Mashiyev), M. Avci, N. Thanh Chung, Existence of solutions
for nonlocal problems in Orlicz-Sobolev spaces via Monotone method, Electronic J. of Mathematical Analysis and Applications, 4 (1), No 6 (2016),
63-73.
[3] A. Ayoujil, M. Moussaoui, Multiplicity results for nonlocal elliptic
transmission problem with variable exponent, Boletim da Sociedade
Paranaense de Matem´atica, 3 (33), No 2 (2015), 185–199; doi:
10.5269/bspm.v33i2.23875.
[4] M. B. Benboubker, E. Azroul, A. Barbara, Quasilinear elliptic problems
with nonstandard growth, Electron. J. Differential Equations, 62 (2011),
1–16.
[5] E. Cabanillas L., J. Bernui B., R.J. de la CruzM., Z. Huaringa S, Existence
of slutions for a class of p(x)-Kirchhoff type equation with dependence on
the gradient, Kyungpook Mathematical J. Kyungpook Nat. Univ., 58, No 3
(2018), 533-546.
[6] F. Cammaroto, L. Vilasi, Existence of three solutions for a degenerate
Kirchhoff–type transmission problem, Numerical Functional Analysis and
Optimization, 35, No 7-9 (2014), 911-931.
[7] B. Cekic, R.A. Mashiyev, Nontrivial Solution for a nonlocal elliptic
transmission problem in variable exponent Sobolev spaces, Abstract
and Applied Analysis 2010 (2010), Article ID 385048, 12 pp.; doi:
10.1155/2010/385048.
[8] M.I.M. Copetti, J. Durany, J.R. Fern´andez, L. Poceiro, Numerical analysis
and simulation of a bio-thermal model for the human foot, Applied
Mathematics and Computation, 305 (2017), 103-116.
[9] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals
in image processing, SIAM J. on Applied Mathematics, 66 (2006), 1383-
1406.
[10] G. Dinca, P. Jebelean, Some existence results for a class of nonlinear equations
involving a duality mapping, Nonlinear Analysis, 46 (2001), 347-363.
[11] X.L. Fan, J.S. Shen, D. Zhao, Sobolev embedding theorems for spaces
Wk,p(x)(
), J. of Mathematical Analysis and Applications, 262 (2001),
749-760.
[12] X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet
problems, Nonlinear Analysis, 52 (2003), 1843-1852.
[13] X.L. Fan, D. Zhao, On the Spaces Lp(x) and Wm,p(x), J. of
Mathematical Analysis and Applications, 263 (2001), 424-446; doi:
10.1006/jmaa.2000.7617.
[14] X.L. Fan, Y.Z. Zhao, Q.H. Zhang, A strong maximum principle for p(x)-
Laplace equations, Chinese J. of Contemporary Mathematics, 24, No 3
(2003), 277-282.
[15] G.M. Figueiredo, Existence of positive solutions for a class of p and q elliptic
problems with critical growth on Rn, J. Math. Anal. Appl., 378, No 2
(2011), 507-518.
[16] V.K. Le, On a sub-supersolution method for variational inequalities with
Leray-Lions operators in variable exponent spaces, Nonlinear Analysis, 71
(2009), 3305-3321.
[17] F. Li, Y. Zhang, X. Zhu, Z. Liang, Ground-state solutions to Kirchhofftype
transmission problems with critical perturbation, J. of Mathematical
Analysis and Applications, 482, No 2 (2020), Art. 123568.
[18] T.F. Ma, J. E. Mu˜noz Rivera, Positive solutions for a nonlinear nonlocal
elliptic transmission problem, Applied Mathematics Letters, 16 (2003),
243-248.
[19] I. Peral, Multiplicity of solutions for the p-Laplacian, International Center
for Theoretical Physics, Lecture Notes, Trieste (1997).
[20] L. Wang, Y. Fan, W. Ge, Existence and multiplicity of solutions for a Neumann
problem involving the p(x)-Laplace operator, Nonlinear Analysis, 71
(2009), 4259–4270.
[21] V.V. Zhikov, Averaging of functionals of the calculus of variations and
elasticity theory, Mathematics of the USSR-Izvestiya, 9 (1987), 33-66; doi:
10.1070/IM1987v029n01ABEH000958.