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1. Introduction

We are concerned with the existence of weak solutions to the following system
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of nonlinear elliptic equations

−M1(u1) div(a(|∇u1|
p(x))|∇u1|

p(x)−2∇u1) = f(x, u1,∇u1)|u1|
t(x)
s(x)

in Ω1,

−M2(u2) div(a(|∇u2|
p(x))|∇u2|

p(x)dx)‖∇u2|
p(x)−2 = |u2|

β(x)−2u2

in Ω2,

∂u1
∂ν

= 0 on Γ1, u1 = u2 on Γ2, (1)

M1(u1)a(|∇u1|
p(x))|∇u1|

p(x)−2 ∂u1
∂ν

= M2(u2)a(|∇u2|
p(x))|∇u2|

p(x)−2 ∂u2
∂ν

on Γ2,

M2(u2)a(|∇u2|
p(x))|∇u2|

p(x)−2 ∂u2
∂ν

+ |u2|
α(x)−2u2 = 0 on Γ3,

where Ω is a bounded smooth domain in R
n, n = 2, 3, such that Ω = Ω1 ∪ Ω2,

Ω1 ∩ Ω2 = ∅; the boundary Γ = ∂Ω is assumed to be splitted in three disjoint
parts: Γ1, Γ2 which represents the common boundary between Ω1 and Ω2, and
Γ3; the functions M1,M2 and a satisfy the following assumptions:

(M0) Mi : W 1,γ(x)(Ωi) −→ (0,+∞) are continuous and bounded on any
bounded subset of W 1,γ(x)(Ωi) such that there are constants m0i,m1i > 0, i =
1, 2 such that m0i ≤ Mi(u) ≤ m1i,

(A0) a : [0,+∞[−→ R is a C1-function such that

a0 +H(a3)a2|t|
q(x)−p(x)

p(x) ≤ a(t) ≤ a1 + a3|t|
q(x)−p(x)

p(x) for all t ≥ 0,

a0, a1 > 0, a2, a3 ≥ 0 are positive numbers, p, α, β, γ, s, t are continuous
functions on Ω, q is some continuous function with N > q(x) > p(x) and
f : Ω × R × R

N → R is a suitable Caratheódory function, H(τ) = 1 if τ >
0 andH(τ) = 0 if τ = 0. We confine ourselves to the case whereM1 = M2 = M
with m0i = m0, m1i = m1, i = 1, 2 for simplicity. Notice that the results of
this work remain valid for M1 6= M2.

We write γ(x) = (1−H(a3))p(x) +H(a3)q(x).

The study of nonlinear boundary value problems involving variable expo-
nents has been received considerable attention in the las decades. This is mo-
tivated by the developments in elastic mechanics, electrorheological fluids and
image restoration, see [1, 9, 21]. We refer the readers to [11, 12, 13] for the
study of p(x)-Laplacian equations and the corresponding variational problems.
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Transmission problems arise in several applications in physics and biology,
see [3, 6, 7, 18]. Recently, in [17] the authors have studied the existence of
ground-state solutions for a class of Kirchhoff-type transmission problem. The
purpose of this work is to study the existence of solutions to the problem (1)
in the Sobolev spaces with variable exponents. We observe that our problem
cannot settled in the variational framework because of the functions Mi and
f . Indeed, these functions create serious technical difficulties and make us
force to apply different tools, such as the monotone operator theory. Also,
the nonlinearity on the boundary (Newton boundary condition), which has a
polynomial behaviour, causes difficulty in proving coercivity of the problem. In
that context, we use an abstra ct result of [10] for monotone maps, to obtain
the existence of weak solutions.

Let us point that the condition (A0) is an extension of the condition given
in [15] and that problem (1) is a generalization of the system proposed in [8] to
describe the bioheat transfer for the bare human foot.

This paper is organized as follows. In Section 2 we present some neces-
sary preliminary knowledge on variable exponent Sobolev spaces. Section 3 is
devoted to the proof of the main result.

2. Preliminaries

We recall the definitions of variable exponent Lebesgue and Sobolev spaces
Lp(x)(Ω), and W 1,p(x)(Ω). In that context, we refer to [13] for the fundamental
properties of these spaces.

Denote by S(Ω) the set of all measurable real functions defined on Ω. Two
functions in S(Ω) are considered as the same element of S(Ω) when they are
equal almost everywhere. Write

C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω},

h− := min
Ω

h(x), h+ := max
Ω

h(x) for every h ∈ C+(Ω).

Define

Lp(x)(Ω) = {u ∈ S(Ω) :

∫

Ω
|u(x)|p(x) dx < +∞ for p ∈ C+(Ω)}

with the norm

|u|p(x),Ω = inf{λ > 0 :

∫

Ω
|
u(x)

λ
|p(x) dx ≤ 1},
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and
W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

with the norm

‖u‖1,p(x),Ω = |u|p(x),Ω + |∇u|p(x),Ω.

The Sobolev space W 1,p(x)(Ω) ∩W 1,γ(x)(Ω) is endowed with the norm

‖u‖1,γ(x),Ω = ‖u‖1,p(x),Ω +H(a3)‖u‖1,q(x),Ω.

Since γ(x) ≥ p(x) we have W 1,p(x)(Ω) ∩W 1,γ(x)(Ω) = W 1,γ(x)(Ω).
Let us define the Banach space X = W 1,γ(x)(Ω1) × W 1,γ(x)(Ω2) equipped

with the norm

‖u‖X = ‖u1‖1,γ(x),Ω1
+ ‖u2‖1,γ(x),Ω2

, ∀u = (u1, u2) ∈ X,

where ‖ui‖1,γ(x),Ωi
is the norm of ui in W 1,γ(x)(Ωi), i = 1, 2. By |u|X we denote

the seminorm in X,

|u|X =

2
∑

i=1

(

|∇ui|p(x),Ωi
+H(a3)|∇ui|q(x),Ωi

)

.

It is obvious that

|∇ui|p(x),Ωi
+H(a3)|∇ui|q(x),Ωi

≤ |u|X ≤ ‖u‖X , ∀u = (u1, u2) ∈ X.

Given (u∗1, u
∗
2) ∈ (W 1,γ(x)(Ω1))

′ ⊕ (W 1,γ(x)(Ω2))
′ we may think of it as an

element of X ′ (the dual space of X):

〈(u∗1, u
∗
2), (u1, u2)〉 = 〈u∗1, u1〉+ 〈u∗2, u2〉.

Then we have X ′ ∼= (W 1,γ(x)(Ω1))
′ ⊕ (W 1,γ(x)(Ω2))

′ (isometric isomorphism),
where the norm in X ′ is given by

‖(u∗1, u
∗
2)‖X′ = ‖u∗1‖+ ‖u∗2‖.

The function space for the weak formulation of (1) is

E = {(u1, u2) ∈ X : u1 = u2 on Γ2}.

It is quite easy to prove that E is a closed subspace of X hence E is reflexive,
and separable as product of separable spaces. From now on, we denote the norm
and the seminorm in E inherited from X by |.|E and ‖.‖E .

In the following, α ∈ C+(∂Ω2), α(x) < p∂(x) for x ∈ ∂Ω2, and β ∈
C+(Ω2) with β(x) < p∗(x), where

p∂(x) =

{

(N−1)p(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N
, p∗(x) =

{

Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.
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Definition 1. Let X be a reflexive real Banach space. The operator
T : X → X∗ is said to satisfy condition (S2) iff, as ν → +∞ the following holds

uν ⇀ u, Tuν → Tu implies uν → u.

We have denoted by “ ⇀ ” (respectively “ → ” ) the convergence in the
weak (respectively strong) topology.

The following theorem due to Dinca and Jebelean [10] allows us to solve
problem (1).

Theorem 2. Let T : X → X∗ be a monotone, hemicontinuous, coercive
operator, satisfying condition (S2) and let K : X → X∗ be compact. If there
is a constant k > 0 such that Tv = Ku and ‖u‖ ≤ k implies ‖v‖ ≤ k, then the
equation Tu = Ku has a solution u ∈ X with ‖u‖ ≤ k.

We need the following auxiliary results.

Lemma 3. Assume that (A0) holds. Then for any k, l > 0 we have
(

ka(|ξ|p)|ξ|p−2ξ − la(|η|p|)||η|p−2η
)

.(ξ − η) ≥ C|ξ − η|p, ∀ ξ, η ∈ R
n. (2)

Proof. We follow the idea presented by Peral in [19]. By the homogeneity of
norm we may assume that |ξ| = 1 and |η| ≤ 1. Furthermore, with a convenient
basis in R

n we can take

ξ = (1, 0, 0, 0, . . . , 0), η = (η1, η2, 0, . . . , 0) and
√

η21 + η22 .

We will prove that

(Aξ −Aη|η|
p−2η1)(1− η1) +Aη|η|

p−2η2
[

(1− η1)2 + η22
]p/2

≥ C,

where Aξ = ka(|ξ|p) and Aη = la(|η|p).

Put t = |η|
|ξ| and s = 〈η,ξ〉

|η||ξ| , and we just need to show that the function

h(t, s) =
Aξ − (Aξt+Aηt

p−1)s+Aηt
p

(1− 2st+ t2)p/2

is bounded from below by a positive constant. Direct calculations show that
fixed t, ∂h

∂s = 0, if

Aξ − (Aξt+Aηt
p−1)s+Aηt

p =
2

p
(Aξ +Aηt

p−2)(1 − 2st+ t2).
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Then for the critical s for f we get

h(t, s) =
2

p

(Aξ +Aηt
p−2)(1 − 2st+ t2)

(1− 2st+ t2)
p−2
2

≥
2a0
p

min{k, l} min
0≤t≤1

1 + tp−2

(1 + t)p−2
≥

a0
p

min{k, l}.

This gives our conclusion.

Lemma 4. Let s ≥ 1, r > 1. Then there exists a positive constant c2 > 0
such that

|v|rE +
‖v‖rE
‖v‖sE

|v2|
s
α(x),Γ3

≥ c2‖v‖
r
E , (3)

for all v = (v1, v2) ∈ E.

Proof. First, we prove that there exists c2 > 0 such that

|v|rE + |v2|
s
α(x),Γ3

≥ c2, (4)

for all v = (v1, v2) ∈ E with ‖v‖E = 1 . Let us assume that (4) is not valid.
Then there exists a sequence {vν} ⊂ E such that:

a) ‖vν‖E = 1,

b) vν ⇀ v = (v1, v2) weakly in E,

c) |vν |
r
E + |v2,ν |

s
α(x),Γ3

≤
1

ν
.

From the compactness of embedding W 1,γ(x)(Ωi) →֒ Lα(x)(∂Ωi), i = 1, 2 and
b) it follows that

vν → v = (v1, v2) strongly in Lα(x)(∂Ω1)× Lα(x)(∂Ω2). (5)

Using (5), the weak lower semicontinuity of the seminorm |v|E and c) we get

|v|rE + |v2|
s
α(x),Γ3

= 0.

Then, v1 = k1, v2 = k2 , for some constants k1, k2. So v2 |Γ3= k2. As
|v2|α(x),Γ3

= 0 we have k2 = 0 and , from the transmission condition, we get
v1 |Γ2= 0. Therefore v = 0. This is a contradiction to a).
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Finally, to prove (3) let v ∈ E, v 6= 0 and v̂ = v
‖v‖E

. From (4) we have

|v|rE
‖v‖βE

+
1

‖v‖sE
|v2|

s
α(x),Γ3

≥ c2.

Multiplying this inequality by ‖v‖rE the assertion (3) follows.

3. Existence of solutions

In this section, we shall state the existence of solution to the elliptic problem
(1). A key role in the proof of our result is played by Theorem 2. For simplicity,
we use C, Ci, C

′
i, i = 1, 2, . . . to denote the general positive constant (the exact

value may change from line to line). Let us define the operators T, S : E → E∗

by

〈Tu, v〉 =
2

∑

i=1

M(ui)

∫

Ωi

a(|∇ui|
p(x))|∇ui|

p(x)−2∇ui∇vi dx

+

∫

Γ3

|u2|
α(x)−2u2v2 dS,

〈Su, v〉 =

∫

Ω1

f(x, u1,∇u1)|u1|
t(x)
s(x)v1 dx+

∫

Ω2

|u2|
β(x)−2u2v2 dx,

u =(u1, u2), v = (v1, v2) ∈ E.

Definition 5. A function u ∈ E is said to be a weak solution of (1) if

Tu = Su in E∗.

Proposition 6. Assume that (M0) and (A0) hold. Then:

(i) T : E → E∗ is a continuous, bounded and strictly monotone operator.

(ii) T is coercive.

(iii) T is of type (S2).

Proof. Define the mappings B0, B and C : E → E∗ respectively by

〈B0(ui), vi〉 =

∫

Ωi

a(|∇ui|
p(x))|∇ui|

p(x)−2∇ui∇vi dx,
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〈B(u), v〉 =
2

∑

i=1

M(ui)〈B0(ui), vi〉,

〈C(u), v〉 =

∫

Γ3

|u2|
α(x)−2u2v2 dS, u = (u1, u2), v = (v1, v2) ∈ E.

So, T = B + C.
i) We first show the boundedness of T . From the Hölder’s inequality, prop-

erties in W 1,p(x)(Ω) and assumptions (M0), (A0) we obtain

|〈B0(ui), vi〉| ≤ |a1|∇ui|
p(x)−1 + a3|∇ui|

qx−1|γ′(x)|∇vi|γ(x) (6)

≤ C
(

|∇ui|
p+−1
(p(x)−1)γ′(x) + |∇ui|

q+−1
(q(x)−1)γ′(x) + 2

)

|∇vi|γ(x)

≤ C
(

|ui|
p+−1
1,γ(x),Ωi

+ |ui|
q+−1
1,γ(x),Ωi

+ 4
)

|vi|1,γ(x),Ωi
,

|〈C(u), v〉| ≤ ||u2|
α(x)−1|α′(x),Γ2

|v2|α(x),Γ3
(7)

≤ C
(

|u2|
α+−1
1,γ(x),Ω2

+ 1
)

|v2|1,γ(x),Ω2
.

Then,

|〈Tu, v〉| ≤ m1C(‖u‖p
+−1

E + ‖u‖q
+−1

E + ‖u‖α
+−1

E + 1)‖v‖E .

To show that T is continuous it is sufficient to prove that B and C are contin-
uous. Indeed, let uν → u in E, uν = (u1,ν , u2,ν), u = (u1, u2).

Then, up a subsequence, we have

ui,ν → ui, ∇ui,ν → ∇ui,ν and |∇ui,ν | ≤ gi(x) a.e. in Ω,

u2,ν → u2 and |u2,ν | ≤ h2(x) a.e. in Γ2, (8)

for some gi ∈ Lp(x)(Ωi), i = 1, 2, h2 ∈ L1(Γ2).
Since a is continuous,

a(|∇ui,ν |
p(x))|∇ui,ν |

p(x)−2∇ui,ν→ a(|∇ui|
p(x))|∇ui|

p(x)−2∇ui a.e. in Ωi. (9)

Further,
∫

Ωi

|a(|∇ui,ν |
p(x))|∇ui,ν |

p(x)−2∇ui,ν |
γ′(x) dx

≤ C

∫

Ωi

||∇ui,ν |
p(x)−1 + |∇ui,ν |

q(x)−1|γ
′(x) dx

≤ C
(

|∇ui,ν |
((p−1)γ′)+

(p(x)−1)γ′(x) + |∇ui,ν |
((q−1)γ′)+

(q(x)−1)γ′(x) + 2
)

≤ C
(

|∇ui,ν |
((p−1)γ′)+

γ(x),Ωi
+ |∇ui,ν |

((q−1)γ′)+

γ(x),Ωi
+ 2

)

≤ C
(

‖uν‖
((p−1)γ′)+

E + ‖uν‖
((q−1)γ′)+

E + 2
)

.

(10)
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Thus, the boundedness of (uν) in E implies that
{a(|∇ui,ν |

p(x))|∇ui,ν |
p(x)−2∇ui,,ν}ν is bounded in (Lγ′(x)(Ωi))

N .

In virtue of Lemma 3.3 in [4], we obtain
∫

Ωi

a(|∇ui,ν |
p(x))|∇ui,ν |

p(x)−2∇ui,ν∇vi dx

→

∫

Ωi

a(|∇ui|
p(x))|∇ui|

p(x)−2∇ui∇vi dx.

The arguments above for (uν) hold in fact for any of its subsequences. Hence
B0(.) is continuous in E.

Let us show that T is monotone. For any u, v, w ∈ E , using conditions
(M0), (A0), the elementary inequality

|x|p − |x|p−1|y| ≥
1

2
|x|p−2(x2 − y2) for all x, y ∈ R

and Lemma 3, we get

〈Tu, u− v〉 − 〈Tv, u− v〉

=

2
∑

i=1

∫

Ωi

(

M(ui)a(|∇ui|
p(x))|∇ui|

p(x)−2∇ui (11)

−M(vi)a(|∇vi|
p(x))|∇vi|

p(x)−2∇vi

)

.
(

∇ui −∇vi

)

dx

+

∫

Γ3

(|u2|
α(x)−2 − |v2|

α(x)−2)(|u2|
2 − |v2|

2) dS ≥ 0,

i.e. T is monotone.
If 〈Tu, u − v〉 − 〈Tv, u − v〉 = 0 then the terms in the right-hand side of

(16) are equal to zero. Hence, ui − vi = ki = const. a.e. in Ωi, i = 1, 2 and
u2 − v2 = 0 a.e. on Γ3. Therefore ki = 0 and u = v a.e.

ii) For any u = (u1, u2) ∈ E, we have

〈Tu, u〉 =
2

∑

i=1

M(ui)

∫

Ωi

a(|∇ui|
p(x))|∇ui|

p(x) dx+

∫

Γ3

|u2|
α(x) dS (12)

≥ m0

2
∑

i=1

[

a0 min{|∇ui|
p−

p,Ωi
, |∇ui|

p+

p,Ωi
}

+ a2H(a3)min{|∇ui|
q−

q,Ωi
, |∇ui|

q+

q,Ωi
}
]

+min{|u2|
α−

p,Γ3
, |u2|

α+

p,Γ3
}.

Now, if
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min{|∇ui|
p−

p(x),Ωi
, |∇ui|

p+

p(x),Ωi
} = |∇ui|

p−

p(x),Ωi
,

min{|∇ui|
q−

q(x),Ωi
, |∇ui|

q+

q(x),Ωi
} = |∇ui|

q−

q(x),Ωi
, (13)

min{|u2|
α−

p(x),Γ3
, |u2|

α+

p(x),Γ3
} = |u2|

α−

p(x),Γ3
,

using inequalities (12) and (13), it follows that

〈Tu, u〉 ≥ m0c4|u|
p−

E + |u2|
α−

p(x),Γ3
.

Provided that ‖u‖E > 1, putting r = p−, s = α− in (3), and noting that

‖u‖p
−−α−

E ≤ 1 we obtain

〈Tu, u〉 ≥ m0c4|u|
p−

E + |u2|
α−

p(x),Γ3
≥ c′2‖u‖

p−

E ,

for some c2′ > 0. For other cases, the proofs are similar and we omit them here.
So we have

〈Tu, u〉 ≥ c3 min{‖u‖p
−

E , ‖u‖p
+

E } = c3‖u‖
p−

E . (14)

iii) To prove that T is an operator of type (S2) in E, first we will prove that
B0(.) is of type (S+).

In fact, let {uν = (u1,ν , u2,ν)} ⊂ E be such that uν ⇀ u = (u1, u2) in X.
Then ui,ν ⇀ ui in W 1,γ(x)(Ωi), i = 1, 2 and

lim sup
ν→∞

〈B0uν −B0u, uν − u〉 ≤ 0.

Thanks to Lemma 3 we infer that B0(.) is monotone, then

lim
ν→∞

〈B0uν −B0u, uν − u〉 = 0. (15)

Hence, by a standard argument (see e.g. V.K. Le, [16], Theorem 4.1) we deduce
that

∇ui,ν(x) → ∇ui(x) a.e. in Ωi. (16)

For a moment, we suppose that for ǫ > 0 there exist δi > 0 and ν0 ∈ N such
that if Hi is a measurable subset of Ωi, with |Hi| < δi then

a0

∫

Hi

|∇ui,ν |
p(x) dx+ a1H(a3)

∫

Hi

|∇ui,ν |
q(x) dx < ǫ for all ν ≥ ν0. (17)

Consequently, {|∇ui,ν |
p(x)} and {|∇ui,ν |

q(x)} are uniformly integrable and hence,
so is {|∇ui,ν − ∇ui|

p(x)} and {|∇ui,ν − ∇ui|
q(x)}. From this and (17), we get

by Vitali’s theorem that
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lim
ν→∞

∫

Ωi

|∇ui,ν −∇ui|
p(x) dx = 0. (18)

Thanks to the compact embedding W 1,p(x)(Ωi) →֒ Lp(x)(Ωi), we have from the
assumptions that

lim
ν→∞

∫

Ωi

|ui,ν − ui|
p(x) dx = 0,

which together with (18) implies that ui,ν → ui in W 1,p(x)(Ωi). By arguments
similar to the previous ones, we can prove that ui,ν → ui in W 1,q(x)(Ωi). There-
fore uν → u in X. Since E is a closed subspace of X, we get uν → u in E.

Now, let us show (17). Let ǫ > 0 be arbitrary. By (15), there exists ν0 ∈ N

such that, for any measurable subset Hi of Ωi and all ν ≥ ν0
∫

Hi

(

a(|∇ui,ν |
p(x))|∇ui,ν |

p(x)−2∇ui,ν−a(|∇ui|
p(x))|∇ui|

p(x)−2∇ui)
)

× (∇ui,ν −∇ui) dx ≤
k0ǫ

4
,

where k0 = min{a0, a1}.
By this and (A0), we infer

I ≡k0

(
∫

Hi

|∇ui,ν(x)|
p(x) dx+H(a3)

∫

Hi

|∇ui,ν(x)|
q(x) dx

)

≤
k0ǫ

4
+

∫

Hi

|a(|∇ui,ν |
p(x))|∇ui,ν |

p(x)−1||∇ui| dx

+

∫

Hi

|a(|∇ui|
p(x))|∇ui|

p(x)−1||∇ui,ν | dx. (19)

Here, we note that the boundedness of {uν} in E and (10) imply that there
exists k1 > 0 such that

|a(|∇ui,ν |
p(x))|∇ui,ν |

p(x)−1|γ′(x) ≤ k1 for all ν.

Using this fact with (19) and the Young and Holder inequalities, we obtain

I ≤
k0ǫ

4
+ 4k1|∇ui|γ(x),Hi

+C

∫

Hi

|a(|∇ui|
p(x))|∇ui|

p(x)−1|γ
′(x) dx (20)

+
k0
2

∫

Hi

|∇ui,ν |
γ(x) dx, for all ν ≥ ν0.
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Noting that |∇ui|
γ(x), |a(|∇ui|

p(x))|∇ui|
p(x)−1|γ

′(x) ∈ L1(Ω), we can find δ > 0
such that for any Hi ⊂ Ω with |Hi| < δ, we have

4k1|∇ui|γ(x),Hi
+

∫

Hi

|a(|∇ui|
p(x))|∇ui|

p(x)−1|γ
′(x) dx <

k0ǫ

4
.

Thus, we get from this inequality and (20) that

I <
k0ǫ

2
+

k0
2

∫

Hi

|∇ui,ν |
γ(x) dx, for all ν ≥ ν0,

which easily yields (17).
It follows that B(u) =

∑2
i=1M(ui)B0(ui) is of type (S+). To prove this,

assuming that {uν} ⊂ E, uν ⇀ u in E and
lim supν→+∞〈B(uν), uν − u 〉 ≤ 0 it is sufficient to show that any subsequence
of {uν} has a strongly convergent subsequence . Let {uνk} be a subsequence of
{uν}. From the boundedness there exists a subsequence de of {uνk} , denoted
still by {uνk = (u1νk , u2νk)} such that M(uiνk) → ti0 with ti0 > 0. Hence

lim sup
k→+∞

〈
2

∑

i=1

ti0〈B0(uiνk), vi〉 = lim sup
k→+∞

〈
2

∑

i=1

M(uiνk)B0(uiνk), vi〉 ≤ 0,

which implies lim sup
k→+∞

〈B0(uiνk), vi〉 ≤ 0, i=1, 2. Since B0 is of type (S+) (in X),

we get uiνk → ui i = 1, 2, so uν → u in X. Since (uν) ⊆ E and E is a closed
subspace of X, we have u ∈ E, so uν → u in E.

Moreover, using the compact embedding W 1,p(x)(Ω2) →֒ Lα(x)(Γ3) we de-
duce that the operator C is compact. Noting that the sum of an (S+) type
mapping and a compact mapping is of type (S+), it follows that the mapping
T = B + C is of type (S+). So it is of type (S2).

Now, we state the assumptions imposed on the nonlinearity f, which appears
in problem (1). We assume that:

(F1) f : Ω × R × R
N → R satisfy the Carathéodory condition in the sense

that f(., u, ξ) is measurable for all (u, ξ) ∈ R × R
N and f(x, ., .) is continuous

for almost all x ∈ Ω.
(F2) |f(x, u, ξ)| ≤ k(x) + |u|η(x) + |ξ|δ(x) a.e. x ∈ Ω, all (u, ξ) ∈ R ×

R
N ,where k : R → R

+, k ∈ Lp′(x)(Ω) and 0 ≤ η(x) < p(x) − 1, 0 ≤ δ(x) <
(p(x)− 1)/p′(x).

Lemma 7. Assume (F1), (F2). Then, the operator S : E → E∗ given by
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〈

S(u1, u2), (v1, v2)
〉

=

∫

Ω1

f(x, u1,∇u1)|u1|
t(x)
s(x)v1 dx

+

∫

Ω2

|u2|
β(x)−2u2v2 dx

:=〈S1u1, v1〉+ 〈S2u2, v2〉, (u1, u2), (v1, v2) ∈ E

is continuous and compact.

Proof. The arguments are very similar to those of Lemma 2.2 of [5] for S1

and Theorem 2.1 of [20] for S2, bearing in mind that E is a closed subspace of
X and taking into account the compact embedding W 1,p(x)(Ω2) →֒ Lβ(x)(Ω2),
so we omit them.

Theorem 8 (The Main result). Let (M0), (A0), (F1) and (F2) hold. If
1 < β(x) < p(x)− 1, then problem (1) has a weak solution.

Proof. In virtue of Proposition 6, T has all the properties in Theorem 2. On
the other hand, S is compact by Lemma 7. Let us prove that there exists some
k > 0 such that T (z) = S(w) and ‖w‖E ≤ k implies ‖z‖E ≤ k, for z, w ∈ E.

Let z = (v1, v2) with ‖z‖E ≥ 1 and w = (u1, u2) ∈ E with T (z) = S(w).

Thus, from (14) (we have removed the dependency on x for simplicity)



106 E. Cabanillas L., Luis Z. Huaringa M.

c3‖z‖
p−

E ≤ 〈T (z), z〉 = 〈S(w), z〉

=

∫

Ω1

f(x, u1,∇u1)|u1|
t
sv1 dx+

∫

Ω2

|u2|
β−2u2v2 dx

≤ (
1

p−
+

1

p+
)|f(x, u1,∇u1)|p′ |v1|p + (

1

β−
+

1

β+
)||u2|

β−1|β′ |v2|β

≤ C
(

∫

Ω1

|k(x)|p
′

dx+

∫

Ω1

|u1|
ηp′ dx+

∫

Ω1

|∇u1|
δp′ dx

)1/α

× ‖v1‖1,p,Ω1 + C(|u2|
q̂
β‖v2‖1,p,Ω2)

≤ C
[ (

|k|τp′ + |u1|
β
ηp′ + |∇u1|

θ
δp′

)1/α
‖v1‖1,p,Ω1

+ |u2|
q̂
β‖v2‖1,p,Ω2

]

≤ C
[

(1 + ‖u1‖
β
1,p,Ω1

+ ‖u1‖
θ
1,p,Ω1

)1/α‖v1‖1,p,Ω1

+ ‖u2‖
q̂
1,p,Ω2

‖v2‖1,p,Ω2

]

≤ C
(

1 + ‖w‖
β/α
E + ‖w‖

θ/α
E + ‖w‖q̂E

)

‖z‖E ,

where

α =







p′−, if |f(x, u,∇u)|p′ > 1,

p′+, if |f(x, u,∇u)|p′ ≤ 1,
, τ =







p′−, if |k|p′ > 1,

p′+, if |k|p′ ≤ 1,

β =







(ηp′)+, if |u|ηp′ > 1,

(ηp′)−, if |u|ηp′ ≤ 1,
, θ =







(δp′)+, if |∇u|δp′ > 1,

(δp′)−, if |∇u|δp′ ≤ 1

and q̂ is some constant with q̂ ∈ [β−, β+] such that

||u2|
β(x)−1|β′(x) ≤ |u2|

q̂
β(x). So, we have obtained

‖z‖p
−−1

E ≤C ′
1 +C ′

2‖w‖
β/α
E + C ′

3‖w‖
θ/α
E + C ′

4‖w‖
q̂
E

≤C ′
1 +C ′

2k
β/α + C ′

3k
θ/α + C ′

4k
q̂. (21)

We note that, by our assumptions on η, δ and β we have β/α, θ/α, q̂ < p−−1.
Moreover, using the fact that tp

−−1 − C ′
2t

β/α − C ′
3t

θ/α − C ′
4t

q̂ − C ′
1 → +∞

as t → +∞, there is some R0 > 0 such that for all t > R0

tp
−−1 − C ′

2t
β/α − C ′

3t
θ/α − C ′

4t
q̂ − C ′

1 ≥ 0. (22)



A NONLOCAL p(x)&q(x) ELLIPTIC TRANSMISSION... 107

Let k > max{1, R0}. Hence, from (21) and (22) we deduce that if T (z) =
S(w) and ‖w‖E ≤ k, then

‖z‖p
−−1

E ≤ C ′
1 + C ′

2k
β/α +C ′

3k
θ/α + C ′

4k
q̂ ≤ kp

−−1,

which implies ‖z‖E ≤ k. Being all the assumptions fulfilled, the conclusion
follows from Theorem 2.

Example. The following functions satisfy the conditions on our work:

a(t) = 1 + t
q(x)−p(x)

p(x) + 1

(1+t
p(x)−2
p(x) )

with a0 = 1, a1 = 2, a2 = a3 = 1,

M(u) =

∫

Ω
(sin2 u+ 1) dx,

f(x, u, ξ) = k(x) + |u|η(x) + |ξ|δ(x), where p ∈ C+(Ω), p(x) < N,

k ∈ Lp′(x)(Ω), 0 ≤ δ(x) < p(x)−1
p′(x) , 0 ≤ η(x) < p(x)− 1.

In this case we obtain a nonlocal capillary transmission problem of the type
p(x)&q(x) Laplacian, with a convection term.
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