FULLY-DIVERSE LATTICES FROM RAMIFIED
CYCLIC EXTENSIONS OF PRIME DEGREE
J. Carmelo Interlando1, Antonio A. Andrade2,
Begoña Garcıa Malaxechebarrıa3,
Agnaldo J. Ferrari4, Robson R. de Araújo5 1 Department of Mathematics and Statistics
San Diego State University
San Diego, CA 92182-7720, USA 2 Department of Mathematics
São Paulo State University
São José do Rio Preto, SP 15054-000, BRAZIL 3 University of Murcia
30100 Murcia, SPAIN 4 Department of Mathematics
São Paulo State University
Bauru, SP 17033-360, BRAZIL 5 Federal University of São Paulo
Cubatão, SP 11533-360, BRAZIL
Let p be an odd prime. Algebraic lattices of full diversity in dimension p are obtained from ramified cyclic extensions of degree p. The 3, 5, and 7-dimensional lattices are optimal with respect to sphere packing density and therefore are isometric to laminated lattices in those dimensions.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] A. A. Andrade, C. Alves and T. B. Carlos, Rotated lattices via the cyclotomic
field Q(\zeta 2r ), Int. J. Appl. Math., 19 (2006), 321-331.
[2] A. A. Andrade and J. C. Interlando, Construction of even-dimensional
lattices of full diversity, Int. J. Appl. Math., 32, No 2 (2019), 325-332; doi:
10.12732/ijam.v32i2.12.
[3] E. Bayer-Fluckiger, F. Oggier, and E. Viterbo, Algebraic lattice constellations:
Bounds on performance, IEEE Trans. Inform. Theory, 52 (2006),
319-327.
[4] P. E. Conner and R. Perlis, A Survey of Trace Forms of Algebraic Number
Fields, World Scientific Publishing Co Pte Ltd., Singapore (1984).
[5] J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices, and Groups, 3rd
Ed., Springer-Verlag, New York (1999).
[6] R. R. de Araujo, A. C. M. M. Chagas, A. A. Andrade and T. P. N´obrega
Neto, Trace form associated to cyclic number fields of ramified odd prime
degree, J. Algebra App., (2019), Art. 2050080.
[7] J. C. Interlando, J. O. D. Lopes and T. P. N. Neto, A new number field
construction of the D4-lattice, Int. J. Appl. Math., 31, No 2 (2018), 299-
305; doi: 10.12732/ijam.v31i2.11.
[8] G. Lettl, The ring of integers of an Abelian number field, J. Reine Angew.
Math., 404 (1990), 162-170.
[9] B. K. Spearman and K. S. Wiliams, The discriminant of a cyclic field of
odd prime degree, Rocky Mountain J. Math, 33 (2003), 1001-1122.
[10] L. C. Washington, Introduction to Cyclotomic Fields, 2nd Ed., Springer-
Verlag, New York (1997).
[11] C. C. T. Watanabe, J. C. Belfiore, E. D. Carvalho and J. V. Filho, E8-
lattice via the cyclotomic field Q(24), Int. J. Appl. Math., 31, No 1 (2018),
63-71; doi: 10.12732/ijam.v31i1.6.
[12] C. C. T. Watanabe, J. C. Belfiore, E. D. Carvalho and J. V. Filho, Construction
of nested real ideal lattices for interference channel coding, Int.
J. Appl. Math., 32, No 2 (2019), 295-323; doi: 10.12732/ijam.v32i2.11.