FULLY-DIVERSE LATTICES FROM RAMIFIED
CYCLIC EXTENSIONS OF PRIME DEGREE

Abstract

Let p be an odd prime. Algebraic lattices of full diversity in dimension p are obtained from ramified cyclic extensions of degree p. The 3, 5, and 7-dimensional lattices are optimal with respect to sphere packing density and therefore are isometric to laminated lattices in those dimensions.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 6
Year: 2020

DOI: 10.12732/ijam.v33i6.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. A. Andrade, C. Alves and T. B. Carlos, Rotated lattices via the cyclotomic field Q(\zeta 2r ), Int. J. Appl. Math., 19 (2006), 321-331.
  2. [2] A. A. Andrade and J. C. Interlando, Construction of even-dimensional lattices of full diversity, Int. J. Appl. Math., 32, No 2 (2019), 325-332; doi: 10.12732/ijam.v32i2.12.
  3. [3] E. Bayer-Fluckiger, F. Oggier, and E. Viterbo, Algebraic lattice constellations: Bounds on performance, IEEE Trans. Inform. Theory, 52 (2006), 319-327.
  4. [4] P. E. Conner and R. Perlis, A Survey of Trace Forms of Algebraic Number Fields, World Scientific Publishing Co Pte Ltd., Singapore (1984).
  5. [5] J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices, and Groups, 3rd Ed., Springer-Verlag, New York (1999).
  6. [6] R. R. de Araujo, A. C. M. M. Chagas, A. A. Andrade and T. P. N´obrega Neto, Trace form associated to cyclic number fields of ramified odd prime degree, J. Algebra App., (2019), Art. 2050080.
  7. [7] J. C. Interlando, J. O. D. Lopes and T. P. N. Neto, A new number field construction of the D4-lattice, Int. J. Appl. Math., 31, No 2 (2018), 299- 305; doi: 10.12732/ijam.v31i2.11.
  8. [8] G. Lettl, The ring of integers of an Abelian number field, J. Reine Angew. Math., 404 (1990), 162-170.
  9. [9] B. K. Spearman and K. S. Wiliams, The discriminant of a cyclic field of odd prime degree, Rocky Mountain J. Math, 33 (2003), 1001-1122.
  10. [10] L. C. Washington, Introduction to Cyclotomic Fields, 2nd Ed., Springer- Verlag, New York (1997).
  11. [11] C. C. T. Watanabe, J. C. Belfiore, E. D. Carvalho and J. V. Filho, E8- lattice via the cyclotomic field Q(24), Int. J. Appl. Math., 31, No 1 (2018), 63-71; doi: 10.12732/ijam.v31i1.6.
  12. [12] C. C. T. Watanabe, J. C. Belfiore, E. D. Carvalho and J. V. Filho, Construction of nested real ideal lattices for interference channel coding, Int. J. Appl. Math., 32, No 2 (2019), 295-323; doi: 10.12732/ijam.v32i2.11.