SERIES IN LE ROY TYPE FUNCTIONS:
INEQUALITIES AND CONVERGENCE THEOREMS

Abstract

In studying the behaviour of series defined by means of the Le Roy type functions, we prove Cauchy–Hadamard type theorems. Asymptotic formulae for these new special functions in the cases of `large' values of indices are also provided, as necessary in the proofs of the convergence theorems for the considered series in the complex plane.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 6
Year: 2020

DOI: 10.12732/ijam.v33i6.3

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M.-A. Al-Bassam, Y.F. Luchko, On generalized fractional calculus and it application to the solution of integro-differential equations, J. Fract. Calc., 7 (1995), 69-88.
  2. [2] R.W. Conway, W.L. Maxwell, A queueing model with state dependent service rate, J. Industr. Engn., 12, No 2 (1962), 132-136.
  3. [3] M.M. Dzrbashjan, Integral Transforms and Representations in the Complex Domain (in Russian), Nauka, Moscow (1966).
  4. [4] M.M. Dzrbashjan, Interpolation and Spectrum Expansions Associated with Fractional Differential Operators (in Russian), Erevan (1983).
  5. [5] R. Garra, F. Polito, On some operators involving Hadamard derivatives, Integr. Trans. Spec. Func., 24, No 10 (2013), 773-782.
  6. [6] R. Garrappa, S. Rogosin, F. Mainardi, On a generalized three-parameter Wright function of Le Roy type, Fract. Calc. Appl. Anal., 20, No 5 (2017), 1196-1215; DOI: 10.1515/fca-2017-0063.
  7. [7] S. Gerhold, Asymptotics for a variant of the Mittag-Leffler function, Integr. Trans. Spec. Func., 23, No 6 (2012), 397-403.
  8. [8] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer (2014); DOI: 10.1007/9783-662-43930-2; 2nd Ed. (2020); DOI: 10.1007/978-3-662-61550-8.
  9. [9] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer- Verlag, Wien (1997), 223-276.
  10. [10] A.A. Kilbas, A.A. Koroleva, S.V. Rogosin, Multi-parametric Mittag-Leffler functions and their extension, Fract. Calc. Appl. Anal., 16, No 2 (2013), 378-404; DOI: 10.2478/s13540-013-0024-9.
  11. [11] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier (2006).
  12. [12] V. Kiryakova, Multiindex Mittag-Leffler functions, related GelfondLeontiev operators and Laplace type integral transforms, Fract. Calc. Appl. Anal., 2, No 4 (1999), 445-462.
  13. [13] V. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241-259; doi: 10.1016/S0377-0427(00)00292-2.
  14. [14] V. Kiryakova, The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus, Computers and Math. with Appl., 59, No 5 (2010), 1885-1895; doi: 10.1016/j.camwa.2009.08.025.
  15. [15] V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions, Computers and Math. with Appl., 59, No 3 (2010), 1128-1141; doi: 10.1016/j.camwa.2009.05.014.
  16. [16] V. Kiryakova, Fractional order differential and integral equations with Erd´elyi-Kober operators: Explicit solutions by means of the transmutation method, AIP Conf. Proc., 1410 (2011), 247-258, doi:10.1063/1.3664376.
  17. [17] ´E. Le Roy, Val´eurs asymptotiques de certaines s´eries proc´edant suivant les puissances ent`eres et positives d’une variable r´eelle (In French), Darboux Bull. (2), 24 (1899), 245-268.
  18. [18] F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial survey, Fract. Calc. Appl. Anal., 10, No 3 (2007), 269- 308; at http://www.math.bas.bg/∼fcaa.
  19. [19] J. Paneva-Konovska, Theorems on the convergence of series in generalized Lommel-Wright functions. Fract. Calc. Appl. Anal., 10, No 1 (2007), 59- 74; at http://www.math.bas.bg/∼fcaa.
  20. [20] J. Paneva-Konovska, Cauchy-Hadamard, Abel and Tauber type theorems for series in generalized Bessel-Maitland functions, Compt. Rend. Acad. Bulg. Sci., 61, No 1 (2008), 9-14.
  21. [21] J. Paneva-Konovska, Convergence of series in Mittag-Leffler functions, Compt. rend. Acad. bulg. Sci., 63, No 6 (2010), 815-822.
  22. [22] J. Paneva-Konovska, A family of hyper-Bessel functions and convergent series in them, Fract. Calc. Appl. Anal., 17, No 4 (2014), 1001-1015; DOI: 10.2478/s13540-014-0211-3.
  23. [23] J. Paneva-Konovska, From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence, World Scientific Publ., London (2016); doi: 10.1142/q0026.
  24. [24] J. Paneva-Konovska, Periphery behaviour of series in Mittag-Leffler type functions, I, Intern. J. Appl. Math., 29, No 1 (2016), 69-78; doi: 10.12732/ijam.v29i1.6.
  25. [25] J. Paneva-Konovska, Periphery behaviour of series in Mittag-Leffler type functions, II, Intern. J. Appl. Math., 29, No 2 (2016), 175-186; doi: 10.12732/ijam.v29i2.2.
  26. [26] J. Paneva-Konovska, Overconvergence of series in generalized MittagLeffler functions, Fract. Calc. Appl. Anal., 20, No 2 (2017), 506—520; DOI: 10.1515/fca-2017-0026.
  27. [27] I. Podlubny, Fractional Differential Equations, Acad. Press (1999).
  28. [28] T. Pog´any, Integral form of the COM-Poisson renormalization constant, Statistics and Probability Letters, 119 (2016), 144-145.
  29. [29] S. Rogosin, The role of the Mittag-Leffler function in fractional modeling, Mathematics, 3 (2015), 368-381.
  30. [30] M.F. Santarelli, D. Della Latta, M. Scipioni, V. Positano, L. Landini, A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography, Computers in Biology and Medicine, 77 (2016), 90-101; doi: 10.1016/j.compbiomed.2016.08.006.
  31. [31] P. Rusev, A theorem of Tauber type for the summation by means of Laguerre’s polynomials, Compt. Rend. Acad. Bulg. Sci., 30, No 3 (1977), 331-334 (in Russian).
  32. [32] P. Rusev, Analytic Functions and Classical Orthogonal Polynomials, Publ. House Bulg. Acad. Sci., Sofia (1984).
  33. [33] P. Rusev, Classical Orthogonal Polynomials and Their Associated Functions in Complex Domain, Publ. House Bulg. Acad. Sci., Sofia (2005).
  34. [34] S. Yakubovich and Yu. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions, Kluwer Acad. Publ., Dordrecht - Boston London (1994).