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Abstract: In studying the behaviour of series defined by means of the Le
Roy type functions, we prove Cauchy–Hadamard type theorems. Asymptotic
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1. Introduction

In two recent papers, Gerhold [7] and independently Garra and Polito [5], in-
troduced the new special function

F
(γ)
α,β(z) =

∞∑

k=0

zk

[Γ(αk + β)]γ
, z ∈ C, α, β, γ ∈ C, (1)

which is an entire function of the complex variable z for all values of the pa-
rameters such that

ℜ(α) > 0, β ∈ C, γ > 0. (2)

In fact, the function (1) is introduced for the values of parameters α > 0, β >
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0, γ > 0, and on a later stage its definition is extended to the range (2) by
Garrappa, Rogosin and Mainardi [6].

The function F
(γ)
α,β is closely related to the classical modified Bessel function

of the first kind I0(2
√
z),

I0(2
√
z) =

∞∑

k=0

zk

(k!)2
, z ∈ C, (3)

as well as to the 2-parametric Mittag-Leffler function (see for example, the
recent monographs [8] and [23]),

Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
, z ∈ C; ℜ(α) > 0, β ∈ C. (4)

The Mittag-Leffler functions (4) have been studied in details by Dzrbashjan
[3], [4]: asymptotic formulae in different parts of the complex plane, distribution
of the zeros, kernel functions of inverse Borel type integral transforms, various
relations and representations. The detailed properties of these functions can be
found in the monographs of Kilbas et al. [11], Podlubny [27], Gorenflo et al.
[8], etc. The function (4) was named after the great Swedish mathematician
Gösta Magnus Mittag-Leffler (1846–1927) who defined it in the 1-parameter
case (Eα(z) with β = 1) by a power series and studied its properties in 1902–
1905 (see detailed description in [8]). As a matter of fact, Mittag-Leffler in-
troduced the function Eα(z) for the purposes of his method for summation of
divergent series. Later, the function (4) was recognized as the ‘Queen function
of fractional calculus’ [9, 18, 29], see also [23], for its basic role for analytic
solutions of fractional order integral and differential equations and systems. In
the recent decades, successful applications of the Mittag-Leffler function and
its generalizations in problems of physics, biology, chemistry, engineering and
other applied sciences made it better known among scientists. A considerable
literature is devoted to the investigation of the analyticity properties of this
function; among the references of [8] and [23] there are quoted several authors
who, after Mittag-Leffler, have investigated such a function from a pure math-
ematical, application oriented and numerical point of view.

The function F
(γ)
α,β is also closely related to the multi-index extensions of

(4) (with 2m and 3m parameters, m = 1, 2, . . . , see [1, 12, 14, 10, 23]), i.e. the
so-called multi-index Mittag-Leffler functions. The (2m) multi-index Mittag-
Leffler function was introduced in Yakubovich and Luchko [34] and studied in
details by Kiryakova [12, 13], defined by the formula
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E(αi), (βi)(z) = Em
(αi), (βi)

(z) =

∞∑

k=0

zk

Γ(α1k + β1) . . .Γ(αmk + βm)
, (5)

for z ∈ C and m > 1. The parameters αi, βi are all complex for i = 1, 2, . . . m
and ℜ(αi) > 0. The next extension, with (3m) indices, has additional m
complex parameters γi. It was introduced and studied in details by Paneva-
Konovska (for its properties see e. g. [23]), also as an extension of the 3-
parameter Mittag-Leffler type function, known as the Prabhakar function. It
is defined by the formula

E
(γi), m
(αi), (βi)

(z) =

∞∑

k=0

(γ1)k . . . (γm)k
Γ(α1k + β1) . . .Γ(αmk + βm)

zk

(k!)m
, (6)

where (γ)k is the Pochhammer symbol: (γ)k = γ(γ + 1) . . . (γ + k − 1), k =
1, 2, . . . , (γ)0 = 1.

Actually if the parameter γ = m is a positive integer, the function F
(γ)
α,β can

be presented as a multi-index Mittag-Leffler function (5) with all equal α’s and
β’s.

The function (1) is a natural extension of the Le Roy function

F (γ)(z) = F
(γ)
1,1 (z) =

∞∑

k=0

zk

[k!]γ
=

∞∑

k=0

zk

[Γ(k + 1)]γ
, z ∈ C, γ ∈ C, (7)

named after the French mathematician Édouard Louis Emmanuel Julien Le Roy
(1870–1954). Le Roy himself introduced it in [17] for the purposes to study the
asymptotics of the analytic continuation of the sum of power series. This reason
for the origin of (7) sounds close to the Mittag-Leffler’s idea to introduce the
function Eα(z) for the aims of analytic continuation, and it seems that Mittag-
Leffler and Le Roy were working on this idea in competition. The Le Roy
function is involved in the solution of problems of various types; in particular
it has been recently used in the construction of a Conway–Maxwell–Poisson
distribution [2] which is important due to its ability to model count data with
different degrees of over- and under-dispersion [28, 30].

For the sake of brevity, in this paper we often use the name Le Roy type

function for the Le Roy type function F
(γ)
α,β defined by (1).

The study of the asymptotic behavior of the Le Roy type function is of
special interest due to the existing and perspective applications. Thus, the

work of Gerhold [7] was devoted to study the asymptotic properties of F
(γ)
α,β(z)

as an entire function in some sectors of the complex plane. It was shown by
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Garrappa, Rogosin and Mainardi [6, Lemma 2.1] that this function has order ρ
and type σ, as follows

ρ =
1

γ ℜ(α) , σ = γ, (8)

if the parameters satisfy the conditions (2).

Let us note that the above results conform with the corresponding ones for
the order and type of the Mittag-Leffler function (4) as well as of its multi-index
extensions (5) and (6) (see details in [12, 15, 10, 8] and [23], as well).

In the series of papers [19]-[22], [24]-[26], as well as in the recent book [23],
we studied series in systems of some special functions of fractional calculus, as
for example fractional indices analogues of the Bessel functions and multi-index
Mittag-Leffler functions and we proved various results on their convergence in
the complex domain.

In this paper, devoted to the Le Roy type functions (1), we prove for them
some inequalities in the complex plane C and on its compact subsets, asymptotic
formulae for ‘large’ values of their indices of and find the domain of convergence
of series in such kind of functions.

2. Inequalities and asymptotic formula

For our purposes we consider the family of functions

F (γ)
α,n(z) =

∞∑

k=0

zk

[Γ(αk + n)]γ
, z ∈ C; n ∈ N0, α > 0, γ > 0, (9)

where N0 means the set of nonnegative integers, i.e. N0 = N ∪ {0}.
We deal with some analytical transformations of the function (9) for each

value of the parameter n. The following result can be formulated.

Lemma 1. Let z ∈ C, α > 0, γ > 0 and n ∈ N0. Then there exists a

number p ∈ N0 and an entire function ϑ
(γ)
α,n such that

F (γ)
α,n(z) =

zp

[Γ(αp + n)]γ
(1 + ϑ(γ)

α,n(z)), (10)

with the following value of p:

(I) p = 0 for n ∈ N,

(II) p = 1 for n = 0.
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Proof. The cases n ∈ N and n = 0 are considered separately. Beginning
with n ∈ N, we note that in this case αk+n > 0 for all the values of k = 0, 1, . . . .
Therefore all the coefficients in the function (9) are different from 0. Then this
function is presented in the form

F (γ)
α,n(z) =

1

[Γ(n)]γ
(1 + ϑ(γ)

α,n(z)), (11)

with

ϑ(γ)
α,n(z) = [Γ(n)]γ

∞∑

k=1

zk

[Γ(αk + n)]γ
. (12)

Let now n = 0. In this case the function (9) is reduced to

F
(γ)
α,0 (z) =

∞∑

k=1

zk

[Γ(αk)]γ
=

z

[Γ(α)]γ
(1 + ϑ

(γ)
α,0(z)), (13)

with

ϑ
(γ)
α,0(z) = [Γ(α)]γ

∞∑

k=2

zk−1

[Γ(αk)]γ
= [Γ(α)]γ

∞∑

k=1

zk

[Γ(α(k + 1))]γ
. (14)

Let us note that (12) and (14) are entire functions. This property follows

from the identities (11) and (13) and from the holomorphicity of F
(γ)
α,n(z) in the

whole complex plane. Further, the formula (10) follows in view of (11) and (13)
with the corresponding p.

Remark 2. Note that the functions (12) and (14) can be written together
as follows

ϑ(γ)
α,n(z) = [Γ(αp + n)]γ

∞∑

k=p+1

zk−p

[Γ(αk + n)]γ
, n ∈ N0, (15)

with the corresponding values of p, namely:

(I) p = 0 for n ∈ N,

(II) p = 1 for n = 0.

Lemma 3. Let z ∈ C, α > 0, γ > 0 and n ∈ N and let K ⊂ C be a
nonempty compact set. Then the entire function ϑγ

α,n, given by (12), satisfies
the following inequality

∣∣∣ϑ(γ)
α,n(z)

∣∣∣ ≤ [Γ(α+ 1)]γ [Γ(n)]γ

[Γ(α+ n)]γ

(
F

(γ)
α,1 (|z|)− 1

)
, z ∈ C, (16)
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and moreover there exists a constant C = C(K), 0 < C < ∞, such that

∣∣∣ϑ(γ)
α,n(z)

∣∣∣ ≤ C
[Γ(n)]γ

[Γ(α+ n)]γ
, (17)

for all the natural numbers n and each z ∈ K.

Proof. Note that the function (12) can be rewritten in the following equiv-
alent form

ϑ(γ)
α,n(z) =

[Γ(n)]γ

[Γ(α+ n)]γ

∞∑

k=1

[Γ(α+ n)]γ

[Γ(αk + n)]γ
zk, (18)

and let us denote

γ̃n,k =
[Γ(α+ n)]γ

[Γ(αk + n)]γ
, ũn,k(z) = γ̃n,k zk. (19)

Then we consecutively obtain the following estimations for (19):

γ̃n,1 = 1,

and for k ∈ N, k 6= 1:

0 < γ̃n,k =
[Γ(α+ 1)]γ

[Γ(αk + 1)]γ

n−1∏

s=1

(α+ s)γ

(αk + s)γ
≤ [Γ(α+ 1)]γ

[Γ(αk + 1)]γ
,

|ũn,k(z)| = γ̃n,k |z|k ≤ [Γ(α+ 1)]γ

[Γ(αk + 1)]γ
|z|k, for k ∈ N.

Therefore,

|ϑα,n(z)| ≤
[Γ(n)]γ [Γ(α+ 1)]γ

[Γ(α+ n)]γ

(
∞∑

k=0

|z|k
[Γ(αk + 1)]γ

− 1

)
,

which proves (16) in the whole complex plane.
Further, for all z on the compact set K, the inequality (17) follows imme-

diately from the inequality (16) and the holomorphicity of the entire function

F
(γ)
α,1 (z) in the whole complex plane.

Theorem 4. Let z ∈ C; n ∈ N, α > 0, γ > 0. Then the Le Roy type

functions F
(γ)
α,n satisfy the following asymptotic formula

F (γ)
α,n(z) =

1

[Γ(n)]γ
(1 + ϑ(γ)

α,n(z)), ϑ(γ)
α,n(z) → 0 as n → ∞. (20)

The functions ϑ
(γ)
α,n(z) are holomorphic for z ∈ C. The convergence is uniform

in the nonempty compact subsets of the complex plane C.
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Proof. The identities (20) as well as the holomorphicity of ϑ
(γ)
α,n(z) in the

whole complex plane are obtained in Lemma 1. The rest follows immediately
from the inequalities (16) and (17), Lemma 3.

Remark 5. According to the asymptotic formula (20), it follows that

there exists a natural number M such that the functions [Γ(n)]γ F
(γ)
α,n(z) have

not any zeros at all for n > M .

3. Series in Le Roy type functions

For simplicity of studying, we introduce auxiliary functions, related to the Le

Roy functions, adding F̃
(γ)
α,0 (z) just for completeness, namely:

F̃
(γ)
α,0 (z) = 1, F̃ (γ)

α,n(z) = zn [Γ(n)]γ F (γ)
α,n(z), n ∈ N; α > 0, γ > 0, (21)

and we consider series in these functions:
∞∑

n=0

an F̃ (γ)
α,n(z), (22)

for z ∈ C and with complex coefficients an (n = 0, 1, 2, ...).
Our main objective is to study the convergence of the series (22) in the

complex plane. We propose results, corresponding to the classical Cauchy-
Hadamard theorem and Abel lemma for the power aeries. Such kind of results
may be useful for studying the solutions of some fractional order differential
and integral equations, expressed in terms of series (or series of integrals) in
special functions of the type (21) (as for example in Kiryakova [16] in a more
general case). Such kind of convergence theorems have been also obtained for
series in other special functions, for example, for series in Laguerre and Hermite
polynomials [31]– [33], and resp. by the author for series in Bessel and Mittag-
Leffler type functions in the previous papers [19]–[22], [24]–[26] and the book
[23].

Let us denote by D(0;R) the open disk with the radius R and centred at
the origin, and let the circle C(0;R) be its boundary, i.e.

D(0;R) : |z| < R and C(0;R) : |z| < R (z ∈ C).

In the beginning, we give a theorem of the Cauchy–Hadamard type for the
series (22).
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Theorem 6 (of Cauchy–Hadamard type). Let z ∈ C, n ∈ N, α > 0, γ > 0.
Then the domain of convergence of the series (22) with complex coefficients an
is the disk D(0;R) with a radius of convergence

R = 1/ lim sup
n→∞

( |an| )1/n. (23)

The cases R = 0 and R = ∞ are included in the general case.

Proof. Denoting for convenience

un(z) = anF̃
(γ)
α,n(z), bn = |an|1/n, Λ = lim sup

n→∞

bn, (24)

and using the asymptotic formula (20), we get

un(z) = anz
n(1 + ϑ(γ)

α,n(z)), ϑ
(γ)
α,0(z) = 0. (25)

Further the proof goes separately in the following three cases.
1. Λ = 0. Then lim

n→∞

bn = lim sup
n→∞

bn = 0. Let us fix z 6= 0. Obviously,

because of (20), there exists a number N1 such that |1+ϑ
(γ)
α,n(z)| < 2 and 2bn <

1/|z| hold for every n > N1, which is equivalent to |un(z)| = bnn|z|n|1+ϑ
(γ)
α,n(z)| <

21−n. The absolute convergence of the series (22) follows immediately from this
inequality.

2. 0 < Λ < ∞. First, let z be in the domain D(0;R) (z ∈ C), i.e.
|z|/R = Λ|z| < 1. Then lim sup

n→∞

bn|z| < 1. Therefore, it exists a number

q < 1 such that lim sup
n→∞

bn|z| ≤ q, whence bnn|z|n ≤ qn. By using the asymptotic

formula (20) for the general member un(z) of the series (22), we obtain |un(z)| =
bnn|z|n|1 + ϑn(z)| ≤ qn|1 + ϑn(z)|. Since lim

n→∞

ϑn(z) = 0 there exists N2 that

|1 + ϑn(z)| < 2 for every n > N2, and hence |un(z)| ≤ 2qn. Since the series
∞∑
n=0

2qn is convergent, the series (22) is also convergent, even absolutely.

Now, let z lie outside this domain. Then |z|/R > 1 and lim sup
n→∞

|z|bn > 1.

Therefore there exists infinite number of values nk of n: |z|nkbnk
nk

> 1. Since
lim
n→∞

ϑn(z) = 0, there exists N3 so that |1 + ϑnk
(z)| ≥ 1/2, for nk > N3, i.e.

|un(z)| ≥ 1/2 for an infinite number of values of n. That means that the
necessary condition for convergence is not satisfied. Therefore the series (22) is
divergent.

3. Λ = ∞. Let z ∈ C\{0}. Then bnk
> 1/|z| for an infinite number of values

nk of n, and from here it follows |unk
(z)| = |z|nk bnk

nk
|1 + ϑnk

(z)| ≥ 1/2 (again
for nk > N3). That means that the necessary condition for the convergence of
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the series (22) is not satisfied and we conclude that the series (22) is divergent
for every z 6= 0.

Thus, the considered series (22) absolutely converges in the disk D(0;R)
with the radius R, given by (23), like in the classical theory of the power series.
Additionally, it turns out that the convergence of the discussed series is uniform
inside the disk, i.e., the following corollary, similar to the classical Abel lemma,
holds.

Corollary 7. Let z ∈ C, n ∈ N, α > 0, γ > 0, and let the series (22)
converge at the point z0 6= 0. Then it is absolutely convergent in the disk
D(0; |z0|). Inside the disk D(0;R), i.e. on each closed disk |z| ≤ r < R (R
defined by (23)), the convergence is uniform.

Proof. Indeed, since the considered series converges at the point z0 6= 0,
its radius of convergence is the positive number R, and moreover the point z0
lies either in the disk D(0;R) or on its boundary - the circle C(0;R). That is
why, the disk D(0; |z0|) is either a part of the region of convergence or coincide
with it, whence the absolute convergence follows. To prove uniformity of the
convergence inside the diskD(0;R), it means to show that the series is uniformly
convergent on each closed disk |z| ≤ r < R. To this purpose, choosing a point

ζ, |ζ| = ρ, r < ρ < R and considering the series (22), we estimate |anF̃ (γ)
α,n(z)|.

First, mention that due to Remark 5, some of the values of F̃
(γ)
α,n(ζ), but only a

finite numbers of them, can be zero. Then there exists a number P such that

|anF̃ (γ)
α,n(z)| = |anF̃ (γ)

α,n(ζ)|
|F̃ (γ)

α,n(z)|
|F̃ (γ)

α,n(ζ)|
≤ |anF̃ (γ)

α,n(ζ)|
|1 + ϑ

(γ)
α,n(z)|

|1 + ϑ
(γ)
α,n(ζ)|

for all n > P and |z| ≤ r.

Because of inequality (17) and the Γ-functions quotient property it follows
that ∣∣∣ϑ(γ)

α, n(z)
∣∣∣ = O

(
1

nαγ

)
.

Then, due to the last relation and along with

lim
n→∞

1

nαγ
= 0, lim

n→∞

(1 + ϑ(γ)
α,n(ζ))

−1 = 1,

there exist numbers A and B such that |1 + ϑ
(γ)
α,n(z)||1 + ϑ

(γ)
α,n(ζ)|−1 ≤ AB and

hence, |anF̃ (γ)
α,n(z)| ≤ AB|anF̃ (γ)

α,n(ζ)|, for all the values of n > P and |z| ≤ r.
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Since the series
∞∑
n=0

anF̃
(γ)
α,n(ζ) is absolutely convergent and by the Weierstrass

comparison criterium, the uniform convergence of the series (22) is proved.

So, the series (22) absolutely converges in the open diskD(0;R) and diverges
in its outside. Inside the disk D(0;R), i.e. on each closed disk |z| ≤ r < R
(R defined by (23)), the convergence is uniform. However, the very disk of
convergence is not obligatorily a region of uniform convergence, and on its
boundary the series may even be divergent. More precise results, connected
with the behaviour of the series (22) ‘near’ the boundary C(0;R) as well as on
it will be discussed and published elsewhere.
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Bull. (2), 24 (1899), 245–268.



1006 J. Paneva-Konovska

[18] F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation pro-
cesses: a tutorial survey, Fract. Calc. Appl. Anal., 10, No 3 (2007), 269–
308; at http://www.math.bas.bg/∼fcaa.

[19] J. Paneva-Konovska, Theorems on the convergence of series in generalized
Lommel–Wright functions. Fract. Calc. Appl. Anal., 10, No 1 (2007), 59–
74; at http://www.math.bas.bg/∼fcaa.

[20] J. Paneva-Konovska, Cauchy-Hadamard, Abel and Tauber type theorems
for series in generalized Bessel–Maitland functions, Compt. Rend. Acad.

Bulg. Sci., 61, No 1 (2008), 9–14.

[21] J. Paneva-Konovska, Convergence of series in Mittag-Leffler functions,
Compt. rend. Acad. bulg. Sci., 63, No 6 (2010), 815–822.

[22] J. Paneva-Konovska, A family of hyper-Bessel functions and convergent
series in them, Fract. Calc. Appl. Anal., 17, No 4 (2014), 1001–1015; DOI:
10.2478/s13540-014-0211-3.

[23] J. Paneva-Konovska, From Bessel to Multi-Index Mittag Leffler Functions:

Enumerable Families, Series in them and Convergence, World Scientific
Publ., London (2016); doi: 10.1142/q0026.

[24] J. Paneva-Konovska, Periphery behaviour of series in Mittag-Leffler type
functions, I, Intern. J. Appl. Math., 29, No 1 (2016), 69–78; doi:
10.12732/ijam.v29i1.6.

[25] J. Paneva-Konovska, Periphery behaviour of series in Mittag-Leffler type
functions, II, Intern. J. Appl. Math., 29, No 2 (2016), 175-186; doi:
10.12732/ijam.v29i2.2.

[26] J. Paneva-Konovska, Overconvergence of series in generalized Mittag-
Leffler functions, Fract. Calc. Appl. Anal., 20, No 2 (2017), 506—520;
DOI: 10.1515/fca-2017-0026.

[27] I. Podlubny, Fractional Differential Equations, Acad. Press (1999).
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