MODIFIED POPOV'S SUBGRADIENT EXTRAGRADIENT
ALGORITHM WITH INERTIAL TECHNIQUE FOR
EQUILIBRIUM PROBLEMS AND ITS APPLICATIONS

Abstract

In this paper, we are introducing a new algorithm that is based on a subgradient and an inertial scheme using an explicit method for step size evaluation to solve pseudomonotone equilibrium problems. The weak convergence theorem for an algorithm is well established on the basis of standard cost bifunction conditions. A useful feature of a method that it operates without a line search procedure or prior Lipschitz-type constant information. The reason for this is that it has used a step size rule that is modified for each iteration on the basis of some of the previous iterations. For computational experiment, we consider the well-known Nash-Cournot equilibrium model to support our well-established convergence result and to see that our suggested methodology has a competitive edge over existing ones.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 5
Year: 2020

DOI: 10.12732/ijam.v33i5.10

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] E. Blum, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145.
  2. [2] F. Facchinei, J.S. Pang, Finite-dimensional Variational inequalities and Complementarity Problems, Springer Science, New York (2007).
  3. [3] I. Konnov, Equilibrium Models and Variational Inequalities, Elsevier, New York (2007).
  4. [4] L.D. Muu, W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal., 18, No 12 (1992), 1159-1166.
  5. [5] K. Fan, A minimax Inequality and Applications, Inequalities III (O. Shisha, Ed.), Academic Press, New York (1972).
  6. [6] T.D. Quoc, L.D. Muu, V.H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optim., 57, (2008), 749-776.
  7. [7] T.D. Quoc, P.N. Anh, L.D. Muu, Dual extragradient algorithms extended to equilibrium problems, J. Global Optim., 52 (2011), 139-159.
  8. [8] S.I. Lyashko, V.V. Semenov, A new two-step proximal algorithm of solving the problem of equilibrium programming, In: Optimization and Its Applications in Control and Data Sciences, Springer Intern. Publ., Switzerland (2016), 315-325.
  9. [9] H.U. Rehman, P. Kumam, Y.J. Cho, Y.I. Suleiman, W. Kumam, Modified Popov’s explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Methods Softw., (2020), 1-32; doi:10.1080/10556788.2020.1734805.
  10. [10] S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331 (2007), 506-515.
  11. [11] H.U. Rehman, N. Pakkaranang, A. Hussain, N. Wairojjana, A modified extra-gradient method for a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces, J. Math. Comput. Sci., 22 (2020), 38-48.
  12. [12] N. Wairojjana, H.U. Rehman, I.K. Argyros, N. Pakkaranang, An accelerated extragradient method for solving pseudomonotone equilibrium problems with applications, Axioms, 9 (2020), # 99; doi:10.3390/axioms9030099.
  13. [13] N. Wairojjana, H.U. Rehman, M.D. la Sen, N. akkaranang, A general inertial projection-type algorithm for solving equilibrium problem in Hilbert spaces with applications in fixed-point problems, Axioms, 9 (2020), # 101; doi:10.3390/axioms9030101.
  14. [14] P.N. Anh, T.N. Hai, P.M. Tuan, On ergodic algorithms for equilibrium problems, J. Glob. Optim., 64 (2015), 179-195.
  15. [15] D.V. Hieu, P.K. Quy, L.V. Vy, Explicit iterative algorithms for solving equilibrium problems, Calcolo, 56 (2019); doi:10.1007/s10092-019-0308-5.
  16. [16] D.V. Hieu, New extragradient method for a class of equilibrium problems in Hilbert spaces, Appl. Anal., 97 (2017), 811-824.
  17. [17] P. Santos, S. Scheimberg, An inexact subgradient algorithm for equilibrium problems, Comput. Appl. Math., 30 (2011), 91-107.
  18. [18] H.U. Rehman, P. Kumam, A.B. Abubakar, Y.J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Comput. Appl. Math., 39 (2020); doi:10.1007/s40314-020-1093-0.
  19. [19] H.U. Rehman, P. Kumam, W. Kumam, M. Shutaywi, W. Jirakitpuwapat, The inertial sub-gradient extra-gradient method for a class of pseudomonotone equilibrium problems, Symmetry, 12 (2020), # 63.
  20. [20] P.N. Anh, L.T. Anh, The subgradient extragradient method extended to equilibrium problems, Opti., 64 (2010), 225-248.
  21. [21] H.U. Rehman, P. Kumam, I.K. Argyros, W. Deebani, W. Kumam, Inertial extra-gradient method for solving a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces with application in variational inequality problem, Symmetry, 12 (2020), # 503.
  22. [22] L.D. Muu, T.D. Quoc, Regularization algorithms for solving monotone Ky fan inequalities with application to a nash-cournot equilibrium model, J. Optim. Theory Appl., 142 (2019), 185-204. 900 N. Wairojjana, H. ur Rehman, N. Pakkaranang, T. Khanpanuk
  23. [23] H.U. Rehman, P. Kumam, I.K. Argyros, N.A. Alreshidi, W. Kumam, W. irakitpuwapat, A self-adaptive extra-gradient methods for a family of pseudomonotone equilibrium programming with application in different classes of variational inequality problems, Symmetry, 12 (2020), # 523.
  24. [24] H.U. Rehman, P. Kumam, I.K. Argyros, M. Shutaywi, Z. Shah, Optimization based methods for solving the equilibrium problems with applications in variational inequality problems and solution of nash equilibrium models, Math., 8 (2020), # 822.
  25. [25] H.U. Rehman, P. Kumam, M. Shutaywi, N.A. Alreshidi, W. Kumam, Inertial optimization based two-step methods for solving equilibrium problems with applications in variational inequality problems and growth control equilibrium models, Energ., 13 (2020), # 3292.
  26. [26] P. Yordsorn, P. Kumam, H.U. Rehman, A.H. Ibrahim, A weak convergence self-adaptive method for solving pseudomonotone equilibrium problems in a real Hilbert space, Math., 8 (2020), # 1165.
  27. [27] B. Martinet, R´egularisation d’in´equations variationnelles par approximations successives, Rev. Fran¸caise Informat. Recherche Op´erationnelle, 4 (1970), 154-158.
  28. [28] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.
  29. [29] A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999), 91-100.
  30. [30] G. Cohen, Auxiliary problem principle and decomposition of optimization problems, J. Optim. Theory Appl., 32 (1980), 277-305.
  31. [31] G. Cohen, Auxiliary problem principle extended to variational inequalities, J. Optim. Theory Appl., 59 (1988), 325-333.
  32. [32] G. Mastroeni, On auxiliary principle for equilibrium problems, In: Equilibrium Problems and Variational Models, Springer, New York (2003), 289- 298.
  33. [33] Y. Liu, H. Kong, The new extragradient method extended to equilibrium problems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat., 113 (2018), 2113-2126.
  34. [34] L.D. Popov, A modification of the Arrow-Hurwicz method for search of saddle points, USSR Comput. Math. Math. Phys., 28 (1980), 845-848; doi:10.1007/BF01141092.
  35. [35] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1-17.
  36. [36] M. Bianchi, S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90 (1996), 31-43.
  37. [37] J.V. Tiel, Convex Analysis: An Introductory Text,Wiley, New York (1984).
  38. [38] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York (2011).
  39. [39] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Var. Anal., 9 (2001), 3-11; doi:10.1023/A:1011253113155.
  40. [40] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-598.
  41. [41] N. Quy, V. Nguyen, L. Muu, On the cournot-nash oligopolistic market equilibrium models with concave cost functions, J. Global Optim., 41 (2005), 351-364.