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1. Introduction

Equilibrium problem (EP) had many mathematical problems as a particu-
lar case, such as the variational inequality problems (VIP), problem of opti-
mization, fixed point problems, complementarity problems, Nash equilibrium
of non-cooperative games, the saddle point and vector minimization problems
(for more details see e.g., [1, 2, 3]). To the best of our knowledge, the term
“equilibrium problem” in an individual way presented in 1992 by Muu and
Oettli [4] and has been further extended by Blum and Oettli [1]. The prob-
lem of equilibrium is also known as the famous Ky Fan inequality [5]. One
of the most interesting and effective areas of research in equilibrium problem
theory is the development of new iterative methods, the improvement of ex-
isting methods, and the examination of their convergence analysis. Several
methods have already been used in recent years to estimate the solution of the
problem of equilibrium in both finite and infinite-dimensional spaces, i.e., the
extragradient methods [6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16] and others in
[17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

The Proximal point method (PPM) is one of the well-established methods
for studying numerical equilibrium problems. Martinet [27] originally intro-
duced this method for monotone variational inequalities problems, which was
eventually extended to monotone operators by Rockafellar [28]. In addition,
Mudafi [29] extended the proximal point method to solve the problem of equi-
librium involving monotone bifunction. The proximal point method is usually
used to solve monotone equilibrium problems. Then, every regularized sub-
problem turns into a strongly monotone equilibrium problem, and a unique
solution exists. On the other hand, another well-known technique is the auxil-
iary problem principle, which is based on the idea of creating a new, identical
problem that is easier to solve than the original problem. This concept was
first studied by Cohen [30] to solve optimization problems and was eventually
used to solve variational inequality problems [31]. As an extension, Mastroeni
[32] studied the auxiliary problem principle in the case of strongly monotone
equilibrium problems.

In 2018, Liu et al. [33] proposed a modification of the Popov's extragradi-
ent method [34] to solve pseudomonotone equilibrium problems in real Hilbert
space. It is mandatory to solve two minimization problems on a closed convex
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set for each iteration to generate an iterative sequence due to the method in [33]
and appropriate fixed step size is required to solve each minimization problem.
Liu et al. [33] iterative sequence {xn} describes as follows: Let x0, y0 ∈ E and
0 < λ ≤ 1

2c2+4c1
. Set

(i)






x1 = argmin
y∈K

{λf(y0, y) + 1
2‖x0 − y‖2},

y1 = argmin
y∈K

{λf(y0, y) + 1
2‖x1 − y‖2}.

(ii) For xn, yn and yn−1, construct a half-space

En = {z ∈ E : 〈xn − λnυn−1 − yn, z − yn〉 ≤ 0},

where υn−1 ∈ ∂2f(yn−1, yn). Compute







xn+1 = argmin
y∈En

{λf(yn, y) + 1
2‖xn − y‖2},

yn+1 = argmin
y∈K

{λf(yn, y) + 1
2‖xn+1 − y‖2}.

The aim of this study is to modify the Algorithm 3.1 in [33] by incorporat-
ing the results in [15] to solve a class of equilibrium problems involving pseu-
domonotone bifunction. This method also includes the inertial term introduced
by Polyak [35] with Algorithm 3.1 in [33], which is used to improve the iterative
sequence of the solution required. The key feature of such algorithms is that
they are independent of any line search method and there is no need to have
previous information about Lipschitz-type constants. Instead, they apply the
step size rule that is revised for each iteration on the basis of certain previous
iterations. The weak convergence of the corresponding method is demonstrated
on the basis of standard assumptions concerning the cost bifunction.

This paper is arranged in the following way: Section 2 there are some def-
initions and basic results that will be used in this article. Section 3 defines
and provides the convergence theorem of an inertial-type algorithm involving
a pseudomonotone bifunction. Section 4 set out some application of our re-
sults. Section 5 sets out experimental studies to demonstrate the algorithmic
performance on tests of a problem modelled on the Nash-Cournot equilibrium
model.
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2. Background

Let K ⊂ E be a convex and closed set of a real Hilbert space E. The inner
product is denoted by 〈., .〉 and the induced norm is denoted by ‖.‖. Let f
be a bifunction f : E × E → R with EP (f,K) denote the solution set of an
equilibrium problem over K and p∗ is any element of EP (f,K).

Let consider the following definitions of a monotonicity of a bifunction (see
[1, 36] for details). A bifunction f : E× E → R on K for γ > 0 is said to be

(1) strongly monotone if

f(x̆, y̆) + f(y̆, x̆) ≤ −γ‖x̆− y̆‖2, ∀ x̆, y̆ ∈ K;

(2) monotone if
f(x̆, y̆) + f(y̆, x̆) ≤ 0, ∀ x̆, y̆ ∈ K;

(3) strongly pseudomonotone if

f(x̆, y̆) ≥ 0 =⇒ f(y̆, x̆) ≤ −γ‖x̆− y̆‖2, ∀x̆, y̆ ∈ K;

(4) pseudomonotone if

f(x̆, y̆) ≥ 0 =⇒ f(y̆, x̆) ≤ 0, ∀ x̆, y̆ ∈ K;

(5) satisfying the Lipschitz-type condition on K if there exits two numbers
c1, c2 > 0, such that

f(x̆, z̆)− c1‖x̆− y̆‖2 − c2‖y̆ − z̆‖2 ≤ f(x̆, y̆) + f(y̆, z̆), ∀x̆, y̆, z̆ ∈ K.

Note: We have the following consequences from the above definitions:

(1) =⇒ (2) =⇒ (4) and (1) =⇒ (3) =⇒ (4).

For given K to be a nonempty closed and convex subset of a real Hilbert
space E and let f : E × E → R be a bifunction through f(x̆, x̆) = 0 for every
x̆ ∈ K. The equilibrium problem [1, 5] for f over K is defined as follows:

Find p∗ ∈ K such that f(p∗, y̆) ≥ 0, ∀ y̆ ∈ K. (EP)

Let g : K → R is a convex function and subdifferential of g at x̆ ∈ K is
defined by

∂g(x̆) = {w ∈ K : g(y̆)− g(x̆) ≥ 〈w, y̆ − x̆〉, ∀ y̆ ∈ K}.
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A normal cone of K at x̆ ∈ K is defined by

NK(x̆) = {w ∈ E : 〈w, y̆ − x̆〉 ≤ 0, ∀ y̆ ∈ K}.

A projection PK(x̆) of x̆ onto a closed, convex subset K of E is defined by

PK(x̆) = argmin
y̆∈K

{‖y̆ − x̆‖}.

Lemma 2.1. ([37]) Assume K be a non-empty, closed and convex subset
of a real Hilbert space E and g : K → R be a convex, subdifferentiable and lower
semicontinuous function on K. Then, p̆ ∈ K is a minimizer of a function g if and
only if 0 ∈ ∂g(p̆) + NK(p̆), where ∂g(p̆) and NK(p̆) denotes the subdifferential
of g at p̆ and the normal cone of K at p̆, respectively.

Lemma 2.2. ([38]) For x̆, y̆ ∈ E and ð ∈ R, then the following relationship
holds:

‖ðx̆+ (1− ð)y̆‖2 = ð‖x̆‖2 + (1− ð)‖y̆‖2 − ð(1− ð)‖x̆− y̆‖2.

Lemma 2.3. ([39]) Let an, bn and cn are sequences in [0,+∞) and

an+1 ≤ an + bn(an − an−1) + cn, ∀n ≥ 1, with
+∞
∑

n=1

cn < +∞

with b > 0 and 0 ≤ bn ≤ b < 1 ∀n ∈ N. Then, the following relations are
established.

(i)

+∞
∑

n=1

[an − an−1]+ <∞, with [s]+ := max{s, 0};

(ii) limn→+∞ an = a∗ ∈ [0,∞).

Lemma 2.4. ([40]) labelopial Let {ξn} be a sequence in E and K ⊂ E

such that

(i) For each ξ ∈ K, limn→∞ ‖ξn − ξ‖ exists;

(ii) all sequentially weak cluster point of {ξn} lies in K.

Then, {ξn} weakly converges to a point in K.
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Assumption 2.1. Let f : E× E → R satisfies the following conditions:

(a1) f(z̆, z̆) = 0,∀z̆ ∈ K and f is pseudomonotone on K;

(a2) f is Lipschitz-type continuous on E with c1, c2 > 0;

(a3) lim sup
n→∞

f(zn, z) ≤ f(z̆, z) for z ∈ K and satisfies zn ⇀ z̆;

(a4) f(z̆, .) is convex and subdifferentiable on K for z̆ ∈ K.

3. Main Results

In this section, we have set up our main method to solve the problem of pseu-
domonotone (EP) containing a bi-functional Lipschitz-type condition. It in-
volves a certain step size rule and an inertial approach to improve the perfor-
mance of the iterative sequence. A detailed methodology is provided in next
page.

Lemma 3.1. Let f : E × E → R satisfies the conditions (a1)-(a4). Then,
for p∗ ∈ EP (f,K) 6= ∅, we have

‖zn − p∗‖2 ≤ ‖wn − p∗‖2 −
(

1− 2µλn
λn+1

)

‖wn − yn‖2

−
(

1− µλn

λn+1

)

‖zn − yn‖2 +
2µλn
λn+1

‖wn − yn−1‖2.

Proof. The value of zn gives that

0 ∈ ∂2

{

λnf(yn, y) +
1

2
‖wn − y‖2

}

(zn) +NEn(zn).

For ω ∈ ∂2f(yn, zn) and ω ∈ NEn(zn) such that λnω + zn − wn + ω = 0. Thus,
we have

〈wn − zn, y − zn〉 = λn〈ω, y − zn〉+ 〈ω, y − zn〉, ∀ y ∈ En.

Since ω ∈ NEn(zn) then 〈ω, y − zn〉 ≤ 0, for all y ∈ En. Thus,

λn〈ω, y − zn〉 ≥ 〈wn − zn, y − zn〉, ∀ y ∈ En. (1)
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Algorithm 1

Initialization: Let x−1, x0, y0 ∈ E, λ0 = λ1 > 0 and sequence ϑn is
nondecreasing and satisfying 0 ≤ ϑn < ϑ <

√
5− 2. Set

x1 = argmin{λ0f(y0, y) +
1

2
‖w0 − y‖2 : y ∈ K},

y1 = argmin{λ0f(y0, y) +
1

2
‖w1 − y‖2 : y ∈ K},

where w0 = x0 + ϑ0(x0 − x−1) and w1 = x1 + ϑ1(x1 − x0).
Iterative steps: Given xn−1, yn−1, xn, yn for n ≥ 1. Determine a set
En = {z ∈ E : 〈wn−λnυn−1−yn, z−yn〉 ≤ 0}, where υn−1 ∈ ∂2f(yn−1, yn).
Step 1: Compute

xn+1 = (1− βn)wn + βnzn,

where zn = argmin{λnf(yn, y) + 1
2‖wn − y‖2 : y ∈ En} and

wn = xn + ϑn(xn − xn−1) and nonincreasing 0 < β ≤ βn ≤ 1.
Step 2: Assume µ(ϑ) > 0 and set d = f(yn−1, zn)− f(yn−1, yn)− f(yn, zn)
such that

λn+1 =







min

{

λn,
µ(‖yn−1−yn‖2+‖yn−zn‖2)

2d

}

if d > 0,

λn else.

Step 3: Compute

yn+1 = argmin{λn+1f(yn, y) +
1

2
‖wn+1 − y‖2 : y ∈ K},

where wn+1 = xn+1 + ϑn+1(xn+1 − xn).
Step 4: If zn = wn = yn then stop, otherwise set n := n + 1 and go back
to Step 1.
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Due to ω ∈ ∂f(yn, zn), we have

f(yn, y)− f(yn, zn) ≥ 〈ω, y − zn〉, ∀ y ∈ E. (2)

From (1) and (2), we obtain

λnf(yn, y)− λnf(yn, zn) ≥ 〈wn − zn, y − zn〉, ∀ y ∈ En. (3)

Similarly to (3) and substituting y = zn, we have

λn
{

f(yn−1, zn)− f(yn−1, yn)
}

≥ 〈wn − yn, zn − yn〉. (4)

Substituting y = p∗ into (3) such that

λnf(yn, p
∗)− λnf(yn, zn) ≥ 〈wn − zn, p

∗ − zn〉. (5)

Since f(p∗, yn) ≥ 0 and from given f(yn, p
∗) ≤ 0 implies that

〈wn − zn, zn − p∗〉 ≥ λnf(yn, zn). (6)

By value of λn+1 we get

f(yn−1, zn)− f(yn−1, yn)− f(yn, zn) ≤
µ(‖yn−1 − yn‖2 + ‖zn − yn‖2)

2λn+1

which, after multiplying both sides by λn > 0, implies that

λnf(yn, zn) ≥ λnf(yn−1, zn)− λnf(yn−1, yn)

− λnµ(‖yn−1 − yn‖2 + ‖zn − yn‖2)
2λn+1

.
(7)

Combining (6) and (7) such that

〈wn − zn, zn − p∗〉 ≥ λn{f(yn−1, zn)− f(yn−1, yn)}

− µλn

2λn+1
‖yn−1 − yn‖2 −

µλn

2λn+1
‖zn − yn‖2.

(8)

Combining (4) and (8) such that

〈wn − zn, zn − p∗〉 ≥ 〈wn − yn, zn − yn〉

− µλn

2λn+1
‖yn−1 − yn‖2 −

µλn

2λn+1
‖zn − yn‖2.

(9)
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We have the following formulas as follows:

−2〈wn − zn, zn − p∗〉 = −‖wn − p∗‖2 + ‖zn − wn‖2 + ‖zn − p∗‖2,

2〈yn − wn, yn − zn〉 = ‖wn − yn‖2 + ‖zn − yn‖2 − ‖wn − zn‖2,
and

‖yn−1 − yn‖2 ≤
(

‖yn−1 − wn‖+ ‖wn − yn‖
)2 ≤ 2‖yn−1 − wn‖2 + 2‖wn − yn‖2.

Combing above facts and (9), completes the proof.

Theorem 3.1. Let {wn}, {yn} and {xn} generated by Algorithm 1 con-
verge weakly to the solution p∗ and

0 < µ <
1
2 − 2ϑ− 1

2ϑ
2

2− ϑ+ 2ϑ2 + ϑ3
and 0 ≤ ϑn ≤ ϑ <

√
5− 2.

Proof. By value of xn+1, we have

‖xn+1 − p∗‖2 = ‖(1 − βn)(wn − p∗) + βn(zn − p∗)‖2

≤ (1− βn)‖wn − p∗‖2 + βn‖zn − p∗‖2.

= ‖wn − p∗‖2 − βn

(

1− 2µλn
λn+1

)

‖wn − yn‖2

− βn

(

1− µλn

λn+1

)

‖zn − yn‖2 +
2µλn
λn+1

βn‖wn − yn−1‖2. (10)

By using wn and Lemma 2.2, we obtain

‖wn − p∗‖2

= ‖(1 + ϑn)(xn − p∗)− ϑn(xn−1 − p∗)‖2

= (1 + ϑn+1)‖xn − p∗‖2 − ϑn‖xn−1 − p∗‖2 + ϑ(1 + ϑ)‖xn − xn−1‖2. (11)

Combining (10) and (11), we get

‖xn+1 − p∗‖2 + 2µβn+1λn+1

λn+2
‖wn+1 − yn‖2

≤ (1 + ϑn+1)‖xn − p∗‖2 − ϑn‖xn−1 − p∗‖2 + ϑ(1 + ϑ)‖xn − xn−1‖2

+
2µβnλn
λn+1

‖wn − yn−1‖2 − βn

(

1− 2µλn
λn+1

)

‖wn − yn‖2
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− βn

(

1− µλn

λn+1

)

‖zn − yn‖2 +
2µβnλn+1

λn+2
‖wn+1 − yn‖2. (12)

By xn+1 and Lemma 2.2, we obtain

‖xn+1 − yn‖2

= ‖(1 − βn)(wn − yn) + βn(zn − yn)‖2

≤ (1− βn)‖wn − yn‖2 + βn‖zn − yn‖2 ≤ ‖wn − yn‖2 + ‖zn − yn‖2. (13)

By wn+1 through Lemma 2.2, we obtain

‖wn+1 − yn‖2

= ‖xn+1 + ϑn+1(xn+1 − xn)− yn‖2

≤ (1 + ϑn+1)‖xn+1 − yn‖2 + ϑn+1(1 + ϑn+1)‖xn+1 − xn‖2

≤ (1 + ϑ)
[

‖wn − yn‖2 + ‖zn − yn‖2
]

+ ϑ(1 + ϑ)‖xn+1 − xn‖2. (14)

Combining (12) and (14), we obtain

‖xn+1 − p∗‖2 + 2µβn+1λn+1

λn+2
‖wn+1 − yn‖2

≤ (1 + ϑn+1)‖xn − p∗‖2 − ϑn‖xn−1 − p∗‖2 + ϑ(1 + ϑ)‖xn − xn−1‖2

+
2µβnλn
λn+1

‖wn − yn−1‖2 +
2µβnλn+1

λn+2
ϑ(1 + ϑ)‖xn+1 − xn‖2

− βn

(

1− 2µλn
λn+1

− 2µλn+1

λn+2
(1 + ϑ)

)

‖wn − yn‖2

− βn

(

1− µλn

λn+1
− 2µλn+1

λn+2
(1 + ϑ)

)

‖zn − yn‖2. (15)

By using Cauchy inequality, we have

‖xn+1 − wn‖2

= ‖xn+1 − xn − ϑn(xn − xn−1)‖2

= ‖xn+1 − xn‖2 + ϑ2n‖xn − xn−1‖2 − 2ϑn〈xn+1 − xn, xn − xn−1〉 (16)

≥ (1− ϑn)‖xn+1 − xn‖2 + (ϑ2n − ϑn)‖xn − xn−1‖2. (17)

By definition of xn+1, we have

‖xn+1 − wn‖2 = β2n‖zn − wn‖2. (18)
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Combining (15), (17) and (18), implies that

‖xn+1 − p∗‖2 − ϑn+1‖xn − p∗‖2 + 2µβn+1λn+1

λn+2
‖wn+1 − yn‖2

≤ ‖xn − p∗‖2 − ϑn‖xn−1 − p∗‖2 + 2µβnλn
λn+1

‖wn − yn−1‖2

+ ϑ(1 + ϑ)‖xn − xn−1‖2 +
2µλn+1

λn+2
ϑ(1 + ϑ)‖xn+1 − xn‖2

− ̺n

[

(1− ϑn)‖xn+1 − xn‖2 + (ϑ2n − ϑn)‖xn − xn−1‖2
]

, (19)

where ̺n := 1
2

(

1− 2µλn

λn+1
− 2µλn+1

λn+2
(1 + ϑ)

)

.

Let Ψn := ‖xn − p∗‖2 − ϑn‖xn−1 − p∗‖2 + 2µβnλn

λn+1
‖wn − yn−1‖2, Qn :=

̺n(1−ϑn)− 2µλn+1

λn+2
ϑ(1+ϑ) and Rn := ϑ(1+ϑ)+̺nϑn(1−ϑn). From the above

substitutions the expression (19) turns into

Ψn+1 ≤ Ψn +Rn‖xn − xn−1‖2 −Qn‖xn+1 − xn‖2. (20)

Next, set Γn := Ψn +Rn‖xn − xn−1‖2 and with use (20), we obtain

Γn+1 − Γn = Ψn+1 +Rn+1‖xn+1 − xn‖2 −Ψn −Rn‖xn − xn−1‖2

≤ −Qn‖xn+1 − xn‖2 +Rn+1‖xn+1 − xn‖2

= −(Qn −Rn+1)‖xn+1 − xn‖2. (21)

Next, we have to compute

Qn −Rn+1

= ̺n(1− ϑn)−
2µλn+1

λn+2
ϑ(1 + ϑ)− ϑ(1 + ϑ) + ̺n+1(ϑ

2 − ϑ)

≥ ̺n(1− ϑ)− 2µλn+1

λn+2
ϑ(1 + ϑ)− ϑ(1 + ϑ) + ̺n+1(ϑ

2 − ϑ)

=
(1

2
− µλn

λn+1
− µλn+1

λn+2
− µλn+1

λn+2
ϑ
)

(1− ϑ)− 2µλn+1

λn+2
(ϑ+ ϑ2)

− ϑ(1 + ϑ) +
(1

2
− µλn+1

λn+2
− µλn+2

λn+3
− µλn+2

λn+3
ϑ
)

(ϑ2 − ϑ)

=
(1

2
− 2ϑ − 1

2
ϑ2

)

− µ

[

( λn

λn+1
+
λn+1

λn+2

)

+
(λn+2

λn+3

)

ϑ3

+
(λn+1

λn+2
− λn

λn+1
− λn+1

λn+2
+

2λn+1

λn+2
− λn+1

λn+2
− λn+2

λn+3

)

ϑ
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+
(

− λn+1

λn+2
+

2λn+1

λn+2
+
λn+1

λn+2
+
λn+2

λn+3
− λn+2

λn+3

)

ϑ2
]

. (22)

Due to λn → λ there exits a fixed number ǫ > 0 such that (∀n ≥ N0)

ǫ ∈
(

0,
1

2
− 2ϑ− 1

2
ϑ2 − µ

(

2− ϑ+ 2ϑ2 + ϑ3
)

)

.

The expression (22) gives that

Qn −Rn+1 ≥ ǫ, ∀n ≥ N0. (23)

Thus, expression (21) turn into

Γn+1 − Γn ≤ −ǫ‖xn+1 − xn‖2 ≤ 0. (24)

Thus, {Γn} is non-increasing. From Γn+1 for n ≥ N0, we have

Γn+1 ≥ −ϑn+1‖xn − p∗‖2. (25)

From Γn for n ≥ N0, we get

Γn ≥ ‖xn − p∗‖2 − ϑn‖xn−1 − p∗‖2. (26)

Now, using (26) for n ≥ N0, we have

‖xn − p∗‖2 ≤ Γn + ϑn‖xn−1 − p∗‖2

≤ ΓN0 + ϑ‖xn−1 − p∗‖2

≤ · · · ≤ ΓN0(ϑ
n−N0 + · · ·+ 1) + ϑn−N0‖xN0 − p∗‖2

≤ ΓN0

1− ϑ
+ ϑn−N0‖xN0 − p∗‖2. (27)

Combining (25) and (27), we obtain

−Γn+1 ≤ ϑn+1‖xn − p∗‖2

≤ ϑ‖xn − p∗‖2

≤ ϑ
ΓN0

1− ϑ
+ ϑn−N0+1‖xN0 − p∗‖2. (28)

It follows from (24) and (28) that

ǫ

k
∑

n=N0

‖xn+1 − xn‖2 ≤ ΓN0 − Γn+1
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≤ ΓN0 + ϑ
ΓN0

1− ϑ
+ ϑn−N0+1‖xN0 − p∗‖2

≤ ΓN0

1− ϑ
+ ‖xN0 − p∗‖2. (29)

letting k → ∞ in (29) we obtain

∞
∑

n=1

‖xn+1 − xn‖ < +∞ implies that ‖xn+1 − xn‖ → 0 as n→ ∞. (30)

From (16) and (30) such as

‖xn+1 − wn‖ → 0 as n→ ∞, (31)

and

0 ≤ ‖xn − wn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − wn‖ −→ 0 as n→ ∞. (32)

From Ψn and (28), we attain

−Ψn+1 ≤ ϑ
ΓN0

1− ϑ
+ ϑn−N0+1‖xN0 − p∗‖2 +Rn‖xn − xn−1‖2. (33)

By expression (15) we can rewrite as

β
(

1− 2µλn
λn+1

− 2µλn+1

λn+2
(1 + ϑ)

)[

‖wn − yn‖2 + ‖zn − yn‖2
]

≤ Ψn −Ψn+1 + ϑ(1 + ϑ)‖xn − xn−1‖2 +
2µλ0
λ

ϑ(1 + ϑ)‖xn+1 − xn‖2. (34)

Summing up them (34) for k ≥ N0, we obtain

β
(

1− 2µλn
λn+1

− 2µλn+1

λn+2
(1 + ϑ)

)[

‖wn − yn‖2 + ‖zn − yn‖2
]

≤ ΨN0 −Ψk+1 + ϑ(1 + ϑ)

k
∑

n=N0

‖xn − xn−1‖2

+
2µλ0
λ

ϑ(1 + ϑ)
k

∑

n=N0

‖xn+1 − xn‖2

≤ ΨN0 + ϑ
ΓN0

1− ϑ
+ ϑn−N0+1‖xN0 − p∗‖2 +R‖xk − xk−1‖2
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+ (ϑ+ ϑ2)
k

∑

n=N0

‖xn − xn−1‖2 +
2µλ0
λ

(ϑ + ϑ2)
k

∑

n=N0

‖xn+1 − xn‖2. (35)

where R := ϑ(1 + ϑ) + 1
2(1− ϑ) and taking k → ∞, we have

∑

n

‖wn − yn‖2 =
∑

n

‖zn − yn‖2 < +∞, (36)

and

lim
n→∞

‖wn − yn‖ = lim
n→∞

‖zn − yn‖ = 0. (37)

By (13), (30), (31) and (37), we deduce the followings:

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖xn − yn‖ = 0. (38)

lim
n→∞

‖wn − yn−1‖ = lim
n→∞

‖yn − yn−1‖ = 0. (39)

By letting k → ∞ in (14) through (30), (36) implies that

∑

n

‖wn+1 − yn‖2 <∞. (40)

The expression (10) and (11) with Lemma 2.3, provides that limit of ‖xn − p∗‖
exists. The sequences {xn}, {wn} and {yn} are bounded. Now, we prove that
every sequential weak limit point of the sequence {xn} is in EP (f,K). Let z is
a weak limit point of {xn}, i.e. there is a subsequence, represent through {xnk

}
of {xn} converges weakly to z. Thus, {ynk

} also converges weakly to z ∈ K.

Assume that that z ∈ EP (f,K). By (3), (4) and the definition of λn+1, we have

λnk
f(ynk

, y)

≥ λnk
f(ynk

, znk
) + 〈wnk

− znk
, y − znk

〉

≥ λnk
f(ynk−1, xnk+1

)− λnk
f(ynk−1, ynk

)− µλnk

2λnk+1
‖ynk

− ynk−1‖2

− µλnk

2λnk+1
‖ynk

− znk
‖2 + 〈wnk

− znk
, y − znk

〉

≥ 〈wnk
− ynk

, znk
− ynk

〉 − µλnk

2λnk+1
‖ynk

− ynk−1‖2

− µλnk

2λnk+1
‖ynk

− znk
‖2 + 〈wnk

− znk
, y − znk

〉, (41)
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where y ∈ En. From (37), (38), (39) and the boundedness of {xn} that the
right-hand side of the above inequality goes to zero. By λnk

≥ λ > 0, we have

0 ≤ lim sup
k→∞

f(ynk
, y) ≤ f(z, y), ∀ y ∈ En.

Due to K ⊂ En and f(z, y) ≥ 0, for all y ∈ K. This proved z ∈ EP (f,K).
By Lemma ??, ensures that {wn}, {xn} and {yn} weakly converges to p∗ as
n→ ∞.

4. Application to variational inequality problem

In this section we discuss the application of Theorem 3.1 to solve a pseudomono-
tone variational inequality problems with Lipschitz-type continuous operator.
An operator F : K → E is said to be

(F1) pseudomonotone on K if

〈F (x1), x2 − x1〉 ≥ 0 =⇒ 〈F (x2), x1 − x2〉 ≤ 0, ∀x1, x2 ∈ K;

(F2) L-Lipschitz continuous on K if

‖F (x1)− F (x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ K.

The variational inequality problem is described as follows:

p∗ ∈ K such that 〈F (p∗), y − p∗〉 ≥ 0, ∀ y ∈ K. (VIP)

Note: If f(x, y) := 〈F (x), y − x〉 for all x, y ∈ K, then problem (EP) turns to
(VIP) with L = 2c1 = 2c2.

Corollary 4.1. Assume that F : K → E satisfies the conditions (F1)-(F2).
Let {xn} be the sequence generated as follows:

(i) Choose x−1, x0, y0 ∈ E, λ0 = λ1 > 0 and 0 ≤ ϑn ≤ ϑ <
√
5 − 2 is

non-decreasing. Set

x1 = PK(w0 − λ0Fy0), y1 = PK(w1 − λ1Fy0),

where w0 = x0 + ϑ0(x0 − x−1) and w1 = x1 + ϑ1(x1 − x0).
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(ii) Given xn−1, xn, yn−1, yn for n ≥ 1. Compute

xn+1 = (1− βn)wn + βnzn and zn = PEn(wn − λnFyn),

where wn = xn + ϑn(xn − xn−1), 0 < β ≤ βn ≤ 1 and

En = {z ∈ E : 〈wn − λnFwn − yn, z − yn〉 ≤ 0}.

(iii) Compute
yn+1 = PK(wn+1 − λn+1Fyn)

where wn+1 = xn+1 + ϑn+1(xn+1 − xn), [t]+ = max{t, 0} and

λn+1 = min

{

λn,
µ(‖yn−1 − yn‖2 + ‖zn − yn‖2)

2
[〈

F (yn−1)− F (yn), zn − yn
〉]

+

}

.

Moreover, we have control parameters conditions, i.e.,

0 < µ <
1
2 − 2ϑ − 1

2ϑ
2

2− ϑ+ 2ϑ2 + ϑ3
with 0 ≤ ϑn ≤ ϑ <

√
5− 2.

Then, the sequence {xn} weakly converges p∗ of (VIP) on K.

5. Numerical illustration

Numerical results are discussed in this section to illustrate the efficiency of
our proposed methodology. The MATLAB code is being used in MATLAB
edition 9.5 (R2018b) on the Intel(R) Core(TM)i5-6200 Processor PC @ 2.30GHz
2.40GHz, RAM 8.00 GB.

Example 5.1. Consider the Nash-Cournot oligopolistic equilibrium model
[41].Assume that there are n firms that assemble the same product. Let x serve
as a vector where each component xi represent the quantity of the product made
by the firm i. The value function P for each individual firm is represented
as Pi(S) = φi − ψiS, where φi > 0, ψi > 0 and S =

∑m
i=1 xi. The profit

function Fi(x) = Pi(S)xi − ti(xi), while ti(xi) is the import duty and payment
for generating xi. The design scheme for the entire theory is getting the set of
K := K1 ×K2× · · · ×Kn, where Ki = [xmin

i , xmax
i ]. Each firm seeks to carry out

its optimum contribute by going into account the following amount of demand
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on the assumption that the output of all the other firms would be an input
parameter. A point p∗ ∈ K = K1 ×K2 × · · · ×Kn is an equilibrium position of
the model if

Fi(p
∗) ≥ Fi(p

∗[xi]), ∀xi ∈ Ki, ∀i = 1, 2, · · · , n.

where p∗[xi] serve as the vector from p∗ by receiving x∗i with xi. Let f(x, y) :=
ϕ(x, y)−ϕ(x, x) with ϕ(x, y) := −∑n

i=1 Fi(x[yi]), and the complication of get-
ting the Nash equilibrium point is

Find p∗ ∈ K : f(p∗, y) ≥ 0, ∀y ∈ K.

The bifunction f can be used in the following form.

f(x, y) = 〈Px+Qy + q, y − x〉,

where q ∈ R5 and A, B are

P =













3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3













Q =













1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2













q = (1,−2,−1, 2,−1)T while Lipschitz constants are c1 = c2 = 1
2‖P − Q‖ (see

[6]). The feasible set K ⊂ Rn is K := {x ∈ R5 : −2 ≤ xi ≤ 5}. The numerical
findings are shown in the Figure 1–2 and Table 1. We use x−1 = x0 = y0 =
(1, 1, 1, 1, 1)T and consider ϑ = ϑn = 0.12 gives µ = 0.12 < 0.1323 from the
given formula.
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Figure 1: Algorithm in [33] for different values of λ.
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Figure 2: Algorithm 1 behaviour for values of λ0.



MODIFIED POPOV’S SUBGRADIENT EXTRAGRADIENT... 897

Table 1: Algorithm 1 (Algo1) and Algorithm 3. 1 (Algo3.1) in [33].

Algo3.1 Algo1

λ0 λ ϑn βn TOL No. Iter. CPU time(s) No. Iter. CPU time(s)

1 1

6.1c1
0.12 0.80 10−6 97 2.0117 22 0.6898

0.8 1

7c1
0.12 0.80 10−6 109 2.3656 26 0.7891

0.6 1

7.5c1
0.12 0.80 10−6 121 3.1567 33 0.9872

0.4 1

8c1
0.12 0.80 10−6 135 3.4834 48 1.1243

0.1 1

9c1
0.12 0.80 10−6 148 3.5834 67 1.4356

Discussion on numerical experiments:

(i) No previous knowledge on Lipschitz-constant c1, c2 is required to run the
Algorithm 1.

(ii) In the Algorithm 1, stepsize is independent of the Lipschitz-constant
choice and uses an explicit stepsize evaluation formula based on previ-
ous iterations.

(iii) We can see that Algorithm in [33] is perform better when the stepsize
value is close to the 1

2c2+4c1
.

(iv) We can see that Algorithm 1 works better when λ0 had value close to 1.

(v) We can see that Algorithm 1 works far better when ϑn is close to
√
5− 2.

6. Conclusion

This article suggests new algorithms to solve the problems of pseudomonotone
equilibrium. The basic edge of this algorithm is that the step-size, in this case,
is independent of the Lipschitz constant type choice. The reasoning is that we
are using an explicit step-by-step evaluation procedure. Numerical experiments
have also been reported to see the performance of our porposed method, and
we can see that the inertial factor is usually performing much better.
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