This article is devoted to investigate the singular values as well as the real fixed points of one-parameter families of transcendental meromorphic functions which are associated with fundamental trigonometric functions , and . For this purpose, we consider the functions
,
and
for , and respectively, and
. It is found that the functions and have infinite number of bounded singular values while the function has infinite number of unbounded singular values. Moreover, the real fixed points of , and are described.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] T.K. Chakra and T. Nayak, Iteration of the translated tangent, Bull.
Malays. Math. Sci. Soc., 42, No 5 (2019), 1993-2008; doi: 10.1007/s40840017-0588-3.
[2] R.E. de Carvalho and E.D. Leonel, Squared sine logistic map, Physica A,
463 (2016), 37-44; doi: 10.1016/j.physa.2016.07.008.
[3] P. Domnguez, J. Vazquez and M.A.M. de Oca, A study of the dynamics
of the family f,μ = sin z + μ
z−kμ where , μ ∈ R\{0} and k ∈ Z\{0},
Discontinuity, Nonlinearity, and Complexity, 5, No 4 (2016), 407-414; doi:
10.5890/DNC.2016.12.006.
[4] N. Fagella, X. Jarque and J. Taixs, On connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed points I, Proc.
Lond. Math. Soc., 97, No 3 (2008), 599-622; doi: 10.1112/plms/pdn012.
[5] M. Kisaka, On topological properties of Fatou sets and Julia sets of transcendental entire functions, Sugaku Expositions, 30, No 2 (2017), 235273;
doi: 10.1090/suga/425.
[6] D. Lim, Fixed points and dynamics on generating function of Genocchi numbers, J. Nonlinear Sci. Appl., 9, No 3 (2016), 933-939; do:
10.22436/jnsa.009.03.22.
[7] T. Nayak and M.G.P. Prasad, Julia sets of Joukowski-Exponential
maps, Complex Anal. Oper. Theory, 8, No 5 (2014), 1061-1076; doi:
10.1007/s11785-013-0335-1.
[8] M.G.P. Prasad, Chaotic burst in the dynamics of f(z) = sinh(z)
z ,
Regular and Chaotic Dynamics, 10, No 1 (2005), 71-80; doi:
10.1070/RD2005v010n01ABEH000301.
[9] M. Sajid, Some dynamical properties of the cosine-meromorphic family,
Int. J. Math. Sci. & Engg. Appls., 8, No 1 (2014), 91-99.
[10] M. Sajid, Singular values and fixed points of family of function zez/(ez−1),
Int. J. Appl. Math., 27, No 2 (2014), 147-154; do: 10.12732/ijam.v27i2.4.
[11] M. Sajid, Singular values and fixed points of family of generating function
of Bernoulli’s numbers, J. Nonlinear Sci. Appl., 8, No 1 (2015), 17-22; doi:
10.22436/jnsa.008.01.03.
[12] M. Sajid, On real fixed points of one parameter family of function x
bx−1 , Tamkang J. Math., 46, No 1 (2015), 61-65; do:
10.5556/j.tkjm.46.2015.1577.
[13] M. Sajid, Real fixed points and dynamics of one parameter family of function (bx − 1)/x, J. of the Association of Arab Universities for Basic and
Applied Sci., 21, No 1 (2016), 92-95; doi: 10.1016/j.jaubas.2015.10.001.
[14] M. Sajid and G.P. Kapoor, Dynamics of a family of non-critically finite
even transcendental meromorphic functions, Regular and Chaotic Dynamics
, 9, No 2 (2004), 143-162; doi: 10.1070/RD2004v009n02ABEH000272.
[15] S. Sharifi, M. Salimi, S. Siegmund and T. Lotfi, A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations, Math. Comput. Simulation, 119 (2016), 69-90; doi:
10.1016/j.matcom.2015.08.011.
[16] J.H. Zheng, On fixed-points and singular values of transcendental meromorphic functions, Science China Mathematics, 53, No 3 (2010), 887-894;
doi: 10.1007/s11425-010-0036-4.