SINGULAR VALUES AND REAL FIXED POINTS OF
ONE-PARAMETER FAMILIES ASSOCIATED WITH
FUNDAMENTAL TRIGONOMETRIC FUNCTIONS sin z, cos z and tan z

Abstract

This article is devoted to investigate the singular values as well as the real fixed points of one-parameter families of transcendental meromorphic functions which are associated with fundamental trigonometric functions $\sin z$, $\cos z$ and $\tan z$. For this purpose, we consider the functions $f_{\mu}(z)={\frac{\sin z}{z^{2}+\mu}}$, $g_{\eta}(z)={\frac{\cos z}{z^{2}+\eta}}$ and $h_{\kappa}(z)=\dfrac{\tan z}{z^{2}+\kappa}$ for $\mu >0$, $\eta>0$ and $\kappa>0$ respectively, and $z \in {\mathbb{C}}$. It is found that the functions $f_{\mu}(z)$ and $g_{\eta}(z)$ have infinite number of bounded singular values while the function $h_{\kappa}(z)$ has infinite number of unbounded singular values. Moreover, the real fixed points of $f_{\mu}(z)$, $g_{\eta}(z)$ and $h_{\kappa}(z)$ are described.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 4
Year: 2020

DOI: 10.12732/ijam.v33i4.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] T.K. Chakra and T. Nayak, Iteration of the translated tangent, Bull. Malays. Math. Sci. Soc., 42, No 5 (2019), 1993-2008; doi: 10.1007/s40840017-0588-3.
  2. [2] R.E. de Carvalho and E.D. Leonel, Squared sine logistic map, Physica A, 463 (2016), 37-44; doi: 10.1016/j.physa.2016.07.008.
  3. [3] P. Domnguez, J. Vazquez and M.A.M. de Oca, A study of the dynamics of the family f,μ =  sin z + μ z−kμ where , μ ∈ R\{0} and k ∈ Z\{0}, Discontinuity, Nonlinearity, and Complexity, 5, No 4 (2016), 407-414; doi: 10.5890/DNC.2016.12.006.
  4. [4] N. Fagella, X. Jarque and J. Taixs, On connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed points I, Proc. Lond. Math. Soc., 97, No 3 (2008), 599-622; doi: 10.1112/plms/pdn012.
  5. [5] M. Kisaka, On topological properties of Fatou sets and Julia sets of transcendental entire functions, Sugaku Expositions, 30, No 2 (2017), 235273; doi: 10.1090/suga/425.
  6. [6] D. Lim, Fixed points and dynamics on generating function of Genocchi numbers, J. Nonlinear Sci. Appl., 9, No 3 (2016), 933-939; do: 10.22436/jnsa.009.03.22.
  7. [7] T. Nayak and M.G.P. Prasad, Julia sets of Joukowski-Exponential maps, Complex Anal. Oper. Theory, 8, No 5 (2014), 1061-1076; doi: 10.1007/s11785-013-0335-1.
  8. [8] M.G.P. Prasad, Chaotic burst in the dynamics of f(z) = sinh(z) z , Regular and Chaotic Dynamics, 10, No 1 (2005), 71-80; doi: 10.1070/RD2005v010n01ABEH000301.
  9. [9] M. Sajid, Some dynamical properties of the cosine-meromorphic family, Int. J. Math. Sci. & Engg. Appls., 8, No 1 (2014), 91-99.
  10. [10] M. Sajid, Singular values and fixed points of family of function zez/(ez−1), Int. J. Appl. Math., 27, No 2 (2014), 147-154; do: 10.12732/ijam.v27i2.4.
  11. [11] M. Sajid, Singular values and fixed points of family of generating function of Bernoulli’s numbers, J. Nonlinear Sci. Appl., 8, No 1 (2015), 17-22; doi: 10.22436/jnsa.008.01.03.
  12. [12] M. Sajid, On real fixed points of one parameter family of function x bx−1 , Tamkang J. Math., 46, No 1 (2015), 61-65; do: 10.5556/j.tkjm.46.2015.1577.
  13. [13] M. Sajid, Real fixed points and dynamics of one parameter family of function (bx − 1)/x, J. of the Association of Arab Universities for Basic and Applied Sci., 21, No 1 (2016), 92-95; doi: 10.1016/j.jaubas.2015.10.001.
  14. [14] M. Sajid and G.P. Kapoor, Dynamics of a family of non-critically finite even transcendental meromorphic functions, Regular and Chaotic Dynamics , 9, No 2 (2004), 143-162; doi: 10.1070/RD2004v009n02ABEH000272.
  15. [15] S. Sharifi, M. Salimi, S. Siegmund and T. Lotfi, A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations, Math. Comput. Simulation, 119 (2016), 69-90; doi: 10.1016/j.matcom.2015.08.011.
  16. [16] J.H. Zheng, On fixed-points and singular values of transcendental meromorphic functions, Science China Mathematics, 53, No 3 (2010), 887-894; doi: 10.1007/s11425-010-0036-4.