ON THE MULTI-INDEX MITTAG-LEFFLER
FUNCTIONS AND THEIR MELLIN TRANSFORMS

Abstract

In this survey paper we consider the classes of the multi-index Mittag-Leffler functions, introduced and studied by the authors as extensions of the classical Mittag-Leffler functions $E_{\alpha,\beta}$ and of the Prabhakar function $E_{\alpha,\beta}^{\gamma}$, by means of replacing the 2 parameters $\alpha$, $\beta$, respectively the 3 parameters $\alpha$, $\beta$, $\gamma$, by $2m$-, resp. $3m$- sets of parameters, $m=1,2,3,...$:

\begin{displaymath}
\alpha \rightarrow (\alpha_1, \alpha_2, ..., \alpha_m), \
\...
...a_m),
\gamma \rightarrow (\gamma_1, \gamma_2, ..., \gamma_m).
\end{displaymath}

Some of their basic properties are discussed, such as the order and type of these entire functions, their place among the special functions of fractional calculus and previously known classical special functions, especially their representations as Wright's generalized hypergeometric functions and Fox's $H$-functions. A very long list of interesting and useful special functions that appear as particular cases is provided.

The importance of the Mellin integral transform is well known as a tool for development of the theories of the special functions and fractional calculus, in many problems for fractional order differential equations and systems whose solutions are usually presented in terms of Mittag-Leffler type functions, and in treating various mathematical models in stochastics, control theory, financial mathematics, etc., that are also widely exploring this kind of special functions. Therefore, in this survey we emphasize on the results for the Mellin-Barnes type contour integral representation of the multi-index Mittag-Leffler functions, and thus on their Mellin transform images.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 4
Year: 2020

DOI: 10.12732/ijam.v33i4.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] P.L. Butzer, A.A. Kilbas, J.J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1-15.
  2. [2] M.M. Dzrbashjan, On the integral transformations generated by the generalized Mittag-Leffler function (in Russian), Izv. AN Arm. SSR, 13, No 3 (1960), 21-63.
  3. [3] M.M. Dzrbashjan, Integral Transforms and Representations in the Complex Domain (in Russian), Nauka, Moscow (1966).
  4. [4] A. Erd´elyi et al. (Ed-s), Higher Transcendental Functions, 1 - 3, McGrawHill, New York-Toronto-London (1953).
  5. [5] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer (2014); DOI: 10.1007/9783-662-43930-2; 2nd Ed. (2020); DOI: 10.1007/978-3-662-61550-8.
  6. [6] R. Gorenflo, Yu. Luchko, F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math. 11 (2000), 175-151.
  7. [7] R. Gorenflo, F.Mainardi, OnMittag-Leffler function in fractional evolution processes, J. Comput. Appl. Math., 118 (2000), 283-299.
  8. [8] H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications, J. of Appl. Math., 2011 (2011), Art. # 298628, 51 pp.; doi: 10.1155/2011/298628.
  9. [9] T.E. Huillet, On Mittag-Leffler distributions and related stochastic processes, J. Comput. and Appl. Math., 296 (2016), 181-211; doi: 10.1016/j.cam.2015.09.031.
  10. [10] A.A. Kilbas, A.A. Koroleva, S.V. Rogosin, Multi-parametric Mittag-Leffler functions and their extension, Fract. Calc. Appl. Anal., 16, No 2 (2013), 378-404; doi: 10.2478/s13540-013-0024-9.
  11. [11] A.A. Kilbas, M. Saigo, R.K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integr. Transf. Spec. Funct., 15, No 1 (2004), 31-49.
  12. [12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier (2006).
  13. [13] V. Kiryakova, Generalized Fractional Calculus and Applications, Longman & J. Wiley, Harlow-N. York (1994).
  14. [14] V. Kiryakova, All the special functions are fractional differintegrals of elementary functions, J. Phys. A: Math. Gen., 30 (1997), 5083-5103; doi: 10.1088/0305-4470/30/14/019.
  15. [15] V. Kiryakova, Multiindex Mittag-Leffler functions, related GelfondLeontiev operators and Laplace type integral transforms, Fract. Calc. Appl. Anal., 2, No 4 (1999), 445-462.
  16. [16] V. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241-259; doi: 10.1016/S0377-0427(00)00292-2.
  17. [17] V. Kiryakova, The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus, Computers and Math. with Appl., 59, No 5 (2010), 1885-1895; doi: 10.1016/j.camwa.2009.08.025.
  18. [18] V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions, Computers and Math. with Appl., 59, No 3 (2010), 1128-1141; doi: 10.1016/j.camwa.2009.05.014.
  19. [19] V. Kiryakova, Yu. Luchko, The multi-index Mittag-Leffler functions and their applications for solving fractional order problems in applied analysis, In: American Institute of Physics - Conf. Proc., 1301 (2010), 597-613; doi: 10.1063/1.3526661.
  20. [20] Yu. Luchko, Operational method in fractional calculus, Fract. Calc. Appl. Anal., 2, No 4 (1999), 463-488.
  21. [21] Yu. Luchko, R. Gorenflo, Scale-invariant solutions of a partial differential equation of fractional order, Fract. Calc. Appl. Anal. 1, No 1 (1998), 63-78.
  22. [22] Yu. Luchko, V. Kiryakova, The Mellin integral transform in fractional calculus, Fract. Calc. Appl. Anal., 16, No 2 (2013), 405-430; doi: 10.2478/s13540-013-0025-8.
  23. [23] F. Mainardi, G. Pagnini, Salvatore Pincherle: The pioneer of the MellinBarnes integrals, J. Comput. and Appl. Math., 153 (2003), 331-342; Eprint http://arxiv.org/abs/math/0702520.
  24. [24] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processs, Fract. Calc. Appl. Anal., 6, No 4 (2003), 441-459.
  25. [25] O.I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables, Ellis Horwood, Chichester (1983); Transl. from Russian Ed. titled: Method of Evaluation of Integrals of Special Functions, Nauka i Teknika, Minsk, 1978.
  26. [26] A.M. Mathai, H.J. Haubold, Special Functions for Applied Scientists, Springer (2008).
  27. [27] A.M. Mathai, H.J. Haubold, Matrix-variate statistical distributions and fractional calculus, Fract. Calc. Appl. Anal., 14, No 1 (2011), 138-155; doi: 10.2478/s13540-011-0010-z.
  28. [28] J. Paneva-Konovska, Multi-index (3m-parametric) Mittag-Leffler functionsand fractional calculus, Compt. rend. Acad. bulg. Sci., 64, No 8 (2011), 1089-1098.
  29. [29] J. Paneva-Konovska, From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence, World Scientific Publ., London (2016); doi: 10.1142/q0026.
  30. [30] J. Paneva-Konovska, Differential and integral relations in the class of multiindex Mittag-Leffler functions, Fract. Calc. Appl. Anal., 21, No 1 (2018), 254-265; doi: 10.1515/fca-2018-0016.
  31. [31] J. Paneva-Konovska, A survey on Bessel type functions as multi-index Mittag-Leffler functions: Differential and integral relations, Intern. J. Appl. Math., 32, No 3 (2019), 357-380; doi: 10.12732/ijam.v32i3.1.
  32. [32] I. Podlubny, Fractional Differential Equations, Acad. Press, Boston etc. (1999).
  33. [33] T.R. Prabhakar, A singular integral equation with a generalized MittagLeffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
  34. [34] A.A. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. More Special Functions, Gordon & Breach Sci. Publ., N. York etc. (1990).
  35. [35] S. Rogosin, The role of the Mittag-Leffler function in fractional modeling, Mthematics 2015, No 3 (2015), 368-381; doi: 10.3390/math3020368.
  36. [36] T. Sandev, Z. Tomovski, Fractional Equations and Models. Developments in Mathematics, Springer, Cham (2019); doi: 10.1007/978-3-030-29614-8.
  37. [37] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Chelsea Publ., New York (1986).
  38. [38] E.M. Wright, On the coefficients of power series having exponential singularities, J. London Math. Soc., 8 (1933), 71-79.
  39. [39] S. Yakubovich, Yu. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions, Kluwer Acad. Publ., Dordrecht-BostonLondon (1994).