
International Journal of Applied Mathematics
————————————————————–
Volume 33 No. 4 2020, 549-571
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v33i4.1

ON THE MULTI-INDEX MITTAG-LEFFLER
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Abstract: In this survey paper we consider the classes of the multi-index
Mittag-Leffler functions, introduced and studied by the authors as extensions of
the classical Mittag-Leffler functions Eα,β and of the Prabhakar function Eγ

α,β,
by means of replacing the 2 parameters α, β, respectively the 3 parameters α,
β, γ, by 2m-, resp. 3m- sets of parameters, m = 1, 2, 3, ...:

α → (α1, α2, ..., αm), β → (β1, β2, ..., βm), γ → (γ1, γ2, ..., γm).

Some of their basic properties are discussed, such as the order and type of these
entire functions, their place among the special functions of fractional calculus
and previously known classical special functions, especially their representations
as Wright’s generalized hypergeometric functions and Fox’s H-functions. A very
long list of interesting and useful special functions that appear as particular
cases is provided.

The importance of the Mellin integral transform is well known as a tool
for development of the theories of the special functions and fractional calculus,
in many problems for fractional order differential equations and systems whose
solutions are usually presented in terms of Mittag-Leffler type functions, and in
treating various mathematical models in stochastics, control theory, financial
mathematics, etc., that are also widely exploring this kind of special functions.
Therefore, in this survey we emphasize on the results for the Mellin-Barnes type
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contour integral representation of the multi-index Mittag-Leffler functions, and
thus on their Mellin transform images.

AMS Subject Classification: 30D20, 33E12, 44A20, 26A33
Key Words: Mellin transform; Mittag-Leffler functions and generalizations;
multi-index Mittag-Leffler functions; Mellin-Barnes-type integral representation

1. Introduction

The special functions, defined in the whole complex plane C by the power series

Eα(z) =

∞∑

k=0

zk

Γ(αk + 1)
, Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
, (1)

with α, β ∈ C, Re(α) > 0, are known as Mittag-Leffler (M-L) functions ([4,
Vol.3, Sect.18.1]). The first one was introduced by Mittag-Leffler, who inves-
tigated some of its properties in a series of articles published mainly in ‘Acta
Mathematica’ (1899-1905), while the latter appeared first in a paper of Wiman
(1905). For a long time in previous century, the M-L functions have been almost
ignored in the common handbooks on special functions and existing tables of
Laplace and Mellin transforms, although a description of their properties has
appeared yet in Vol. 3 of the Bateman Project (Eds. Erdélyi et al.), in a chapter
devoted to ‘miscellaneous functions’ ([4, Sect.18.1]). The modern aspects and
a deep study on the M-L functions are presented in the book of Dzherbashyan
[3]: asymptotic formulae in different parts of the complex plane, distribution
of the zeros, kernel functions of inverse Borel type integral transforms, various
relations and representations. The detailed properties of these functions can
be found in the monographs of Podlubny [32], Kilbas-Srivastava-Trujillo [12],
Gorenflo-Kilbas-Mainardi-Rogosin [5], see also Kiryakova [13], [8], [35], etc.

Recently the interest to M-L type functions and their generalizations has
grown up in view of their important role in fractional calculus and related
integral and differential equations of fractional order (as their solutions) and
applications [35], for example in modelling some evolution problems [7], frac-
tional diffusion processes [24], nonlinear waves, etc. The M-L function enjoys
also applications in the stochastic processes, statistical distributions and condi-
tional expectations as the so-called M-L (probability) density, see for example
Mathai, Haubold et al. [27], [8], [9], etc.

Prabhakar [33] extended (1) to 3 parameters, by introducing the function
(also known as Prabhakar function)



ON THE MULTI-INDEX MITTAG-LEFFLER... 551

Eγ
α, β(z) =

∞∑

k=0

(γ)k
Γ(αk + β)

zk

k!
, α, β, γ ∈ C, Re(α) > 0, (2)

where (γ)k is the Pochhammer symbol ([4, Sect.2.1.1])

(γ)0 = 1, (γ)k = γ(γ + 1) . . . (γ + k − 1). (3)

For γ = 1 this function coincides with Eα, β, and for γ = β = 1 with Eα, i.e.:

E1
α, β(z) = Eα, β(z), E1

α, 1(z) = Eα(z). (4)

Prabhakar introduced this function for γ with a positive real part, and in this
case it is an entire function of z of order ρ = 1/Re(α) (as mentioned in [12],
[26], [5]) and of type σ = 1.

Prabhakar studied some properties of the three parametric Mittag-Leffler
type function (2) and of an integral operator containing this function in the
kernel, and applied his results to prove the existence and uniqueness of the
solution for the corresponding integral equation. Further, some properties of
Eγ

α,β(z) including differentiation and integration relations of integer and frac-
tional order are proved by Kilbas, Saigo and Saxena [11], see more in the recent
book by Gorenflo-Kilbas-Mainardi-Rogosin [5]. For a recent use of the Prab-
hakar (3-parametric) M-L type function (2) in the friction memory kernel and
in the exact solutions of the fractional generalized Langevin equation, see for
example Sandev and Tomovski [36].

At the end of 20th century a class of special functions of Mittag-Lefler type
that are multi-index (or vector index) analogues of Eα,β(z) has been introduced
and studied. The indices α, β are replaced by two sets of multi-indices

α → (α1, α2, ..., αm) and β → (β1, β2, ..., βm).

Definition 1. Let m > 1 be an integer, α1, ..., αm > 0, β1, ..., βm be
arbitrary real (complex) numbers. By means of these ‘multi-indices’, the multi-
index (2m-parametric) Mittag-Lefler functions are defined as:

E(αi),(βi)(z) = Em
(αi),(βi)

(z) =
∞∑

k=0

zk

Γ (α1k + β1) ... Γ (αmk + βm)
. (5)

The class of functions (5) has been introduced first by Luchko et al. (see e.g.
Yakubovich and Luchko [39], [21], [20]), and studied in details by Kiryakova (see
e.g. [15], [16], [17]). A more general case of the multi-index M-L functions (5)
allowing the indices α1, α2, ..., αm to be arbitrary real (not obligatory positive)
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was introduced and studied by Kilbas et al. (see for example, Kilbas-Koroleva-
Rogosin [10]). For an expectedly long list of their particular cases, see Kiryakova
[16], [17], and for various applications, including as scale-invariant solutions of
the diffusion-wave equation, as in [21], [6], in fractional modelling [35], see also
[19]. Representations of many Special Functions of Fractional Calculus (SF of
FC) in terms of the multi-index Mittag-Leffler functions (5) are also discussed.
Details can be seen in [16], [17], [18], also in the monograph [29] and in the
papers [30], [31].

As proved in Kiryakova [15], [16], the multi-index Mittag-Leffler functions
(5) (with 2m parameters) are entire functions of order ρ and type σ, given by
the formulas:

1

ρ
= α1 + · · ·+ αm,

1

σ
= (ρα1)

ρα1 · · · (ραm)ραm , (6)

and have a prescribed asymptotic behaviour for sufficiently large of variable |z|.
Some other properties of these functions, such as asymptotic formulae for

‘large’ values of the parameters and series in systems of such kind of functions
in the complex plane C are studied by Paneva-Konovska [29], also the domains
of convergence of such series are found, and their behaviour on the boundaries
of these domains are studied.

The next level of extension is the class of the 3m-parametric multi-index
Mittag-Leffler functions, defined for complex parameters (for details see [28]
and [29], generalizing both the functions (2) and (5). In this survey we mention
some properties of these functions, discuss their place among the previously
known special functions, and provide important integral representations and
various special cases.

The emphasize is given to the Mellin transform images of the considered
M-L type functions, via their Mellin-Barnes type integral representations. It
is well known that the Mellin transform plays important role in the theory of
special functions, see for example: [23] (for the contributions of S. Pincherle
to Mellin-Barnes integrals); the book by Marichev [25] (devoted to methods of
evaluation of integrals of special functions via the Mellin transform); also in
fractional calculus - see works by Butzer-Kilbas-Trujillo [1], Luchko-Kiryakova
[22], in probability and statistics [27], [8], [9], etc.

2. The multi-index (3m- and 2m-parametric)
Mittag-Leffler functions

The 3m-parametric multi-index Mittag-Leffler functions, as further extention of
the (2m-) multi-index M-L functions (5), are introduced by Paneva-Konovska
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[28] as follows.

Definition 2. Let m ≥ 1 be an integer and consider the parameters
αi, βi, γi ∈ C, Re(αi) > 0, for i = 1, 2, . . . m. By means of the multi-
indices (αi), (βi), (γi) the so-called 3m-parametric multi-index Mittag-Leffler
(3m-, multi-M-L) functions are introduced as

E
(γi), m
(αi), (βi)

(z) =
∞∑

k=0

(γ1)k . . . (γm)k
Γ(α1k + β1) . . .Γ(αmk + βm)

zk

(k!)m
, (7)

with (γi)k as in (3).

Naturally, the basic properties of (7) depend on the parameters. Starting
with the case when among the parameters γi-s there are no negative integers
or zero, we have the following result.

Theorem 3. If each of the parameters γ1, . . . , γm is neither a negative
integer nor zero, then the multi-index Mittag-Leffler function (7) is an entire
function of order ρ and type σ with

1

ρ
= Re(α1) + · · ·+Re(αm), (8)

respectively
1

σ
= |(ρα1)

ρα1 | . . . |(ραm)ραm | . (9)

Moreover, for each positive ε the asymptotic estimate

|E(γi),m
(αi), (βi)

(z)| < exp((σ + ε)|z|ρ), |z| ≥ r0 > 0, (10)

holds with ρ, σ like in (8), (9), for |z| ≥ r0(ε), r0(ε) sufficiently large.

For the proof, see Paneva-Konovska [28, Th.2.1] and [29]. Let us note that
for αi > 0 and all γi = 1, i = 1, ...,m, the formulae (8), (9), (10) reduce to (6)
and corresponding asymptotic formula, obtained by Kiryakova in [15, Th.1],
[16], etc.

In the case when there is a parameter of γ1, . . . , γm which is a negative
integer or zero, the corresponding result is given with the next theorem.

Theorem 4. If at least one of the parameters γ1, . . . , γm is a non-positive
integer, then the multi-index Mittag-Leffler function (7) reduces to a finite sum
as follows:
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E
(γi),m
(αi), (βi)

(z) =
M∑

k=0

(γ1)k . . . (γm)k
Γ(α1k + β1) . . .Γ(αmk + βm)

zk

(k!)m
· (11)

3. The multi-index Mittag-Leffler functions as
Fox’s and Wright’s functions

Most of the (classical) special functions of mathematical physics are special
cases of the generalized hypergeometric functions pFq (Kiryakova [14]), and
thus, of the more general Meijer’s G-functions, see in Kiryakova [13, Appendix],
and also in [4, Ch.5], [34], [25]. However, the Mittag-Leffler function serves as
an example of special function that could not be included in the scheme of
Meijer’s G-functions, being a case of a more general Fox’s H-function, and only
for rational α = p/q, (1) reduces to a G-function. Same is the case with the
Wright generalized hypergeometric functions pΨq.

Therefore, it is important to emphasize the place that the multi-index M-L
functions (5) and (7) occupy among the previously known special functions, es-
pecially in the scheme of Wright generalized hypergeometric functions pΨq and
Fox’s H-functions (see e.g. [34], [13, Appendix]), and mainly - the important
role in FC and as solutions of fractional order differential and integral equations
and systems, as extensions of the ‘Queen function of FC’ , the M-L function
(cf. [7]).

Definition 5. Under the Fox H-function we mean a generalized hyperge-
ometric function defined by means of the Mellin-Barnes-type contour integral
([34], [26], [13], etc.)

Hm, n
p, q (σ) = Hm, n

p, q

[
σ

∣∣∣∣
(a1, A1) . . . (ap, Ap)

(b1, B1) . . . (bq, Bq)

]

= Hm, n
p, q

[
σ

∣∣∣∣
(ak, Ak)

p
1

(bk, Bk)
q
1

]
=

1

2πi

∫

L′

Hm, n
p, q (s)σsds, (12)

with the integrand of the form

Hm, n
p, q (s) =

m∏
i=1

Γ(bi − sBi)
n∏

j=1
Γ(1− aj + sAj)

q∏
i=m+1

Γ(1− bi + sBi)
p∏

j=n+1
Γ(aj − sAj)

. (13)
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(Practically, expression (13) but with s 7→ −s, i.e. Hm, n
p, q (−s), is the Mellin

transform (30) of (12).) The curve L′ is a suitable contour in C, m, n, p, q
are integers 0 ≤ m ≤ q, 0 ≤ n ≤ p, the parameters aj , bi ∈ C, Aj , Bi > 0,
j = 1, . . . , p, i = 1, . . . , q and Aj(bi+ l) 6= Bi(aj − l′− 1), l, l′ = 0, 1, 2, . . . . For
various type of contours and conditions for existence and analyticity of function

(12) in disks ⊂ C with radii ρ =
p∏

j=1
Aj

−Aj

q∏
i=1

Bi
Bi , one can see in [34], [13,

Appendix], etc.

For A1 = · · · = Ap = 1, B1 = · · · = Bq = 1, the H-function (12) turns into
the more popular Meijer’s G-function (see e.g. [4, Vol.1, Ch.5],[34],[13]). Since
the G- and H- functions encompass almost all elementary and special functions
([14], [18]), this makes the knowledge on them very useful. Note that the
generalized hypergeometric functions pFq are special cases of the G-function,
namely:

pFq(a1, . . . , ap; b1, . . . , bq;σ) = BG1, p
p, q+1

[
−σ

∣∣∣∣
1− a1, . . . , 1− ap

0, 1 − b1, . . . , 1− bq

]
, (14)

with the coefficient B as

B =

q∏
i=1

Γ(bi)

p∏
i=1

Γ(ai)

,

while the Mittag-Leffler functions (1) with irrational parameters α > 0 and the
Wright generalized hypergeometric functions pΨq with irrational Aj , Bi > 0,
give examples of H-functions, not reducible to G-functions, namely:

pΨq

[
(a1, A1) . . . (ap, Ap)

(b1, B1) . . . (bq, Bq)

∣∣∣∣σ
]
=

∞∑

k=0

Γ(a1 + kA1) . . .Γ(ap + kAp)

Γ(b1 + kB1) . . .Γ(bq + kBq)

σk

k!

= H1, p
p, q+1

[
−σ

∣∣∣∣
(1− a1, A1), . . . , (1− ap, Ap)

(0, 1), (1 − b1, B1), . . . , (1− bq, Bq)

]
, (15)

and specially for the M-L function (see [15], etc.),

Eα,β(σ) = 1Ψ1

[
(1, 1)

(β, α)

∣∣∣∣ σ
]
= H1, 1

1, 2

[
−σ

∣∣∣∣
(0, 1)

(0, 1), (1 − β, α)

]
. (16)

For A1 = · · · = Ap = 1, B1 = · · · = Bq = 1, cf. (14),
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pΨq

[
(a1, A1) . . . (ap, Ap)

(b1, B1) . . . (bq, Bq)

∣∣∣∣σ
]
= C pFq(a1, . . . , ap; b1, . . . , bq;σ)

= G1, p
p, q+1

[
−σ

∣∣∣∣
1− a1, . . . , 1− ap

0, 1− b1, . . . , 1− bq

]
, C =

p∏
i=1

Γ(ai)

q∏
i=1

Γ(bi)

. (17)

In what follows we need the two numerical sets Sl and Sr, defined as follows:

Sl = {s : s = −k (k ∈ N0)},
and

Sr = {s : s = l + γi, (l ∈ N0, γi ∈ C, Re(γi) > 0; i = 1, . . . ,m)}.

Remark 6. The intersection of the sets Sl and Sr is empty, i.e. Sl∩Sr = ∅.
Moreover, if

γ̃ = min
i=1÷m

Re(γi), (18)

then the set Sl lies on the left hand side of the strip

S = {s : s ∈ C, 0 < Re(s) < γ̃}, (19)

while the set Sr lies on its right.

Theorem 7. Let αi > 0, βi, γi ∈ C, Re(γi) > 0 for i = 1, . . . , m.
Then the multi-index Mittag-Leffler functions (7) are expressed by Wright’s
generalized hypergeometric functions pΨq, (15), as well as Fox’s H-function
(12) as follows:

E
(γi), m
(αi), (βi)

(z)=A mΨ2m−1

[
(γ1, 1), ..., (γm , 1)

(β1, α1), ..., (βm, αm), (1, 1), ..., (1, 1)

∣∣∣∣ z
]

= A H1, m
m, 2m

[
−z

∣∣∣∣
(1− γ1, 1), ..., (1 − γm, 1)

[(0, 1), (1 − βi, αi)]
m
1

]
, A =

[
m∏

i=1

Γ(γi)

]−1

· (20)

They have the following Mellin-Barnes-type contour integral representation:

E
(γi), m
(αi), (βi)

(z) =
A

2πi

∫

L′

H1, m
m, 2m(s)(−z)sds

=
A

2πi

∫

L

H1, m
m, 2m(−s)(−z)−sds, | arg(−z)| < π, (21)
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where the constant A is as in (20), the integrand is

H1, m
m, 2m(s) =

Γ(−s)
m∏
i=1

Γ(γi + s)

[Γ(1 + s)]m−1
m∏
i=1

Γ(βi + sαi)

, (22)

and L is an arbitrary contour in C running from −i∞ to +i∞ in a way that
the poles s = −k (k ∈ N0) of Γ(s) lie to the left of L and the poles s = l + γi
(l ∈ N0) of Γ(γi − s) (i = 1, . . . ,m) to the right of it.

Proof. According to Remark 6, none of the poles of Γ(s) and Γ(γi − s) are
in the strip S, given by (19). Moreover, the poles s = −k (k ∈ N0) of Γ(s) lie to
the left of this strip, and the poles s = l+γi (l ∈ N0) of Γ(γi− s) (i = 1, . . . ,m)
to its right.

Let us consider the right hand side of (21) and introduce the notation

I(z) =
A

2πi

∫

L

H1, m
m, 2m(−s)(−z)−sds, with A =

[
m∏

i=1

Γ(γi)

]−1

. (23)

Calculating the residues of the integrand of (23) at the simple poles sk = −k,
k = 0, 1, 2, . . . , and taking into account the asymptotic formula (see e.g. [4,
Vol.1, 1.1.(8)])

Γ(s) =
(−1)k

k!(s + k)
[1 +O(s+ k)] (s → −k; k = 0, 1, 2, . . . ),

we have

I(z) = A

∞∑

k=0

Ress=−k

{
H1, m

m, 2m(−s)(−z)−s
}

= A

∞∑

k=0

Ress=−k





Γ(s)
m∏
i=1

Γ(γi − s)

[Γ(1− s)]m−1
m∏
i=1

Γ(βi − sαi)

(−z)−s





= A

∞∑

k=0





(−1)k
m∏
i=1

Γ(γi + k)

k![Γ(1 + k)]m−1
m∏
i=1

Γ(βi + kαi)

(−z)k





= A
∞∑

k=0

m∏
i=1

Γ(γi + k)

m∏
i=1

Γ(βi + kαi)

zk

(k!)m
= E

(γi), m
(αi), (βi)

(z),
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that proves (21).
Furthermore, writing (7) in its explicit form, we have

E
(γi), m
(αi), (βi)

(z)=A
∞∑

k=0

Γ(k + γ1) . . .Γ(k + γm)

Γ(α1k + β1) . . .Γ(αmk + βm)(Γ(k + 1))m−1

zk

k!
,

with A as in (23), and comparing with (15), we obtain (20) that completes the
proof of the theorem.

If all the γi = 1, then Theorem 7 gives the corresponding result for the 2m-
multi-index M-L functions (5), proved in Kiryakova [15, Lemma 1], namely:

Corollary 8. Let αi > 0, βi,∈ C, for i = 1, ...,m. Then the multi-index
Mittag-Leffler functions (5) are expressed by Wright’s generalized hypergeo-
metric functions as well as Fox’s H-function in the form

Em
(αi), (βi)

(z) = 1Ψm

[
(1, 1)

(β1, α1), . . . , (βm, αm)

∣∣∣∣ z
]

= H1, 1
1, m+1

[
−z

∣∣∣∣
(0, 1)

(0, 1), [(1− βi, αi)]m1

]
· (24)

They have the following Mellin-Barnes type contour integral representation:

Em
(αi), (βi)

(z) =
1

2πi

∫

L′

H1, 1
1, m+1(s)(−z)sds

=
1

2πi

∫

L

H1, 1
1, m+1(−s)(−z)−sds, | arg(−z)| < π, (25)

where

H1, 1
1, m+1(s) =

Γ(−s)Γ(1 + s)
m∏
i=1

Γ(βi + sαi)

, (26)

and L is an arbitrary contour in C running from −i∞ to +i∞ in a way that
the poles s = −k (k ∈ N0) of Γ(s) lie to the left of L and the poles s = l + 1
(l ∈ N0) of Γ(1− s) (i = 1, . . . ,m) to the right of it.

Proof. Here we only give the idea of the proof. Taking all the γi = 1
we observe that m pairs of parameters of the H-function in the formula (20)
become the same. Further we consider the following 3 sets of these pairs of
parameters:

A1 = {(0, 1)|m1 }, B1 = {(0, 1)}, Bi = {(0, 1)|m−1
1 (1− βi, αi)|m1 }.
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Since m − 1 pairs in the sets A1 and Bi are the same and due the symmet-
ric property of the H-function and the reduction formula (for details see e.g.
Kiryakova [13, Appendix]), the corollary follows.

Corollary 9. Let α > 0, β, γ ∈ C, Re(γ) > 0. Then the 3-parametric
Mittag-Leffler (Prabhakar) function (2) can be expressed by Wright’s general-
ized hypergeometric function as well as a Fox’s H-function in the form

Eγ
α, β(z) = [Γ(γ)]−1

1Ψ1

[
(γ, 1)

(β, α)

∣∣∣∣ z
]

= [Γ(γ)]−1H1, 1
1, 2

[
−z

∣∣∣∣
(1− γ, 1)

(0, 1), (1 − β, α)

]
· (27)

And the Prabhakar function has the following Mellin-Barnes-type contour in-
tegral representation:

Eγ
α, β(z) =

[Γ(γ)]−1

2πi

∫

L′

H1, 1
1, 2(s)(−z)sds

=
[Γ(γ)]−1

2πi

∫

L

H1, 1
1, 2(−s)(−z)−sds, | arg(−z)| < π, (28)

where

H1, 1
1, 2(s) =

Γ(−s)Γ(γ + s)

Γ(β + αs)
(29)

and L is an arbitrary contour in C running from −i∞ to +i∞ in a way that
the poles s = −k (k ∈ N0) of Γ(s) lie to the left of L and the poles s = l + γ
(l ∈ N0) of Γ(γ − s) to its right.

For γ = 1, one gets the corresponding representations and Mellin-Barnes
integrals for the classical M-L function as in (16), see also the extended survey
by Haubold-Mathai-Saxena [8].

Remark 10. The relation, given with the formula (28), was mentioned in
Kilbas-Koroleva-Rogozin [10] but it has been known since from Kilbas-Saigo-
Saxena [11]. Unfortunately, there is a unpleasant mistake in [11]. The condition
γ 6= 0, imposed there, is not sufficient for separating the poles, used in the given
proof.

Theorem 7 and its above mentioned special cases allow us to describe the
asymptotic behaviour of the multi-index M-L functions as z → 0; z → ∞ also
via the theory of H- and pΨq-functions. Note that in the case of the classical
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M-L function (1) (m = 1), Dzrbashjan [2], [3] established various asymptotic
formulas for |z| → ∞, valid in different parts of the complex plain and under dif-
ferent conditions on ρ and µ. For example, if ρ > 1/2 and inside angle domains,
(1) is ≈ ρzρ(1−µ) exp(zρ). An asymptotic estimate for multi-index M-L func-
tions (5) in the case m > 1 is given in [17] similar to (10), and in more detailed
situations, the asymptotic of the multi-index M-L functions could be found
from their interpretation as mΨ2m−1-, and respectively as 1Ψm−functions.

4. Mellin integral transform for
the multi-index Mittag-Leffler functions

According to the theory of the Mellin transform of a function f(t) of a real
variable t ∈ R

+ = (0,∞), it is defined by

(Mf)(s) = M[f(t)](s) = F (s) =

∞∫

0

f(t)ts−1dt (s ∈ S ⊂ C), (30)

S is a suitable vertical strip (see, for example, the book by Titchmarsh [37]),
and the inverse Mellin transform is given for t ∈ R

+ by the formula (γ = Re(s)):

(M−1F )(t) = M−1[F (s)](t) =
1

2πi

γ+i∞∫

γ−i∞

F (s)t−sds, 0 < t < ∞, (31)

where the integral is understood in the sense of the Cauchy principal value.
For more detailed information on the Mellin integral transform, its proper-

ties and applications, we refer the reader to the classical books with tables of
integral transforms, and also to works as [1], [25], [24], [22], etc.

In what follows we use the results of Theorem 7 and its corollaries. By
setting −z = t and having in mind that 0 < t < ∞, we see that | arg(−z)| =
| arg(t)| = 0 < π. That is why the representation (21) holds true with −z = t.

The corresponding results, referring to the functions (5) and (2), will fol-
low merely as corollaries from the main result below, and as modifications of
Corollaries 8 and 9.

In this way, we can formulate the results for the Mellin transform image of
the multi-index Mittag-Leffler functions.

Theorem 11. Let the parameters αi > 0, βi, γi ∈ C, and Re(γi) > 0
for i = 1, ...,m (m ∈ N). Then the Mellin transform of the 3m-multi-index
Mittag-Leffler function is expressed as
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M[E
(γi), m
(αi), (βi)

(−t)](s) =

[
m∏

i=1

Γ(γi)

]−1

H1, m
m, 2m(−s) (0 < Re(s) < γ̃), (32)

with γ̃ and H1, m
m, 2m as defined in (18), resp. (22), and t > 0.

Proof. In particular, if L is the straight line Res = γ, 0 < γ < γ̃ and taking
t ∈ (0,∞), then the relation (21) with −z = t leads to

E
(γi),m
(αi), (βi)

(−t) =

[
m∏

i=1

Γ(γi)

]−1
1

2πi

γ+i∞∫

γ−i∞

H1, m
m, 2m(−s)t−sds. (33)

The relation (33) means that the function E
(γi),m
(αi), (βi)

(−t) is the inverse Mellin

transform of the function

[
m∏
i=1

Γ(γi)

]−1

H1, m
m, 2m(−s), cf. with (31). Therefore,

the direct Mellin transform of the 3m-parametric function is given by the rela-
tion

M[E
(γi), m
(αi), (βi)

(−t)](s) =

[
m∏

i=1

Γ(γi)

]−1

H1, m
m, 2m(−s),

that should be proved.

Taking all the γi = 1, or respectively m = 1, and using the relations (25)
and (28) in Corollaries 8 and 9, the result of Theorem 11 reduces to Mellin
transform images of the functions (5), respectively (2). The corresponding
corollaries are formulated below.

Corollary 12. Let the parameters αi > 0 and βi ∈ C for i = 1, ...,m.
Then the Mellin transform of the 2m-multi-index Mittag-Leffler function (5) is
expressed by the following formula

M[Em
(αi), (βi)

(−t)](s) = H1, 1
1, m+1(−s) (0 < Re(s) < 1), (34)

with H1, 1
1, m+1 like in (26), and t > 0.

Corollary 13. Let the parameters α > 0, β, γ ∈ C and Re(γ) > 0. Then
the Mellin transform of the 3-parametric Mittag-Leffler (Prabhakar) function
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(2) is expressed as follows (a known result, see for example in the book [5,
eq.(5.1.27)]):

M[Eγ
α, β(−t)](s) = [Γ(γ)]−1H1, 1

1, 2(−s) =
Γ(s)Γ(γ − s)

Γ(γ)Γ(β − sα)
, (35)

for 0 < Re(s) < Re(γ), t > 0 and with H1, 1
1, 2 as in (29).

Remark 14. Let us note that there is an idea for the Mellin transform of
the 3-parametric Mittag-Leffler function (2) in the paper [11]. Unfortunately,
the result is not completely correct, since it is not taken into account what the
argument of the function Eγ

α, β should be, and the constant [Γ(γ)]−1 is missing
as well.

5. Special cases of the multi-index Mittag-Leffler functions

In this section we consider a number of interesting special cases of the 3m- and
2m-multi-index Mittag-Leffler functions (7), (5), depending on the particular
choice of parameters. When all the parameters αi are positive, i.e.

αi > 0, for i = 1, . . . ,m,

their relations with the Wright pΨq-functions and Fox H-functions are given.
For our purpose we consider some specific cases of the parameters.

Case 1. If m = 1, the formula (7) gives the three parametric Mittag-Leffler
function (2), known also as the Prabhakar function, i.e.

Eγ
α, β(z) = E

(γ), 1
(α), (β)(z).

Its representations by the Wright 1Ψ1-function and Fox H-function are given
by the formula (27). In addition, if γ = 1 and in view of (5), the function (2)
reduces to the two parametric M-L function (1), namely

Eα, β(z) = E 1
α, β(z) = E 1

(α), (β)(z) = E
(1), 1
(α), (β)(z),

and then each of both formulae (24) and (27) produces

Eα, β(z) = 1Ψ1

[
(1, 1)

(β, α)

∣∣∣∣ z
]
= H1, 1

1, 2

[
−z

∣∣∣∣
(0, 1)

(0, 1), (1 − β, α)

]
. (36)

Some more particular examples are considered below.

For β = 1, or respectively α = β = 1, we have:

Eα(z) = E
(1), 1
(α), (1)(z) = 1Ψ1

[
(1, 1)

(1, α)

∣∣∣∣ z
]
= H1, 1

1, 2

[
−z

∣∣∣∣
(0, 1)

(0, 1), (0, α)

]
, (37)
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and

E1(z) = exp(z) = E
(1), 1
(1), (1)(z) = 0Ψ0

[−−
−−

∣∣∣∣ z
]
= H1, 0

0, 1

[
−z

∣∣∣∣
−−
(0, 1)

]
, (38)

while for α = β, we get the Rabotnov function Eα,α, see [32].

Case 2. If γ1 = · · · = γm = 1, the definition of the 3m-parametric M-L
function (7) reduces to the multi-index Mittag-Leffler function (5) with 2m
parameters:

E(αi),(βi)(z) = E
(1), m
(αi), (βi)

(z) = E
(1,...,1), m
(αi), (βi)

(z), (39)

and its representation by the Wright 1Ψm-function and Fox H-function is shown
by the formula (24). For αi > 0, this is the function studied in details by
Kiryakova in a series of publications, and for arbitrary real αi - considered in
Kilbas et al., [10].

Further, in this case (see details in Kiryakova [16], [18], etc.), for m = 2,
α1, 2 := 1/ρ1, 2 and β1, 2 := µ1, 2 , the function (5), (39) is Dzrbashjan’s M-L
type function from [2]. In view of (24), it can be presented as follows:

E(1/ρ1,1/ρ2),(µ1, µ2)(z) = E
(1,1), 2
(1/ρ1,1/ρ2),(µ1, µ2)

(z) = 1Ψ2

[
(1, 1)

(µi, 1/ρi) |21

∣∣∣∣ z
]

= H1, 1
1, 3

[
−z

∣∣∣∣
(0, 1)

(0, 1), (1 − µi, 1/ρi) |21

]
. (40)

The so-called Wright function (classical, to distinguish from the notion ‘gen-
eralized Wright function’) has arisen in the studies of Fox (1928), Wright (1933),
Humbert and Agarwal (1953), and it is also referred to in [4, Vol.3]. Initially,
Wright defined it only for α > 0, then prolonged its definition for α > −1. We
see that it appears now as a case of multi-M-L function with m = 2:

φ(α, β; z) =
∞∑

k=0

1

Γ(αk + β)

zk

k!
= 0Ψ1

[ −
(β, α)

∣∣∣∣ z
]
= E

(2)
(α,1),(β,1)(z). (41)

This function plays important role in the solutions of linear partial fractional
differential equations as the fractional diffusion-wave equation studied by Nig-
matullin (1984-1986, to describe the diffusion process in media with fractal
geometry, 0 < α < 1) and by Mainardi et al. (1994 and next, for propa-
gation of mechanical diffusive waves in viscoelastic media, 1 < α < 2). In
the form M(z;β) = φ(−β, 1 − β;−z), β := α/2, it is recently called also
as the Mainardi function, see [32, Ch.1]. In our denotations, it appears as

M(z;β) = E
(2)
(−β,1),(1−β)(−z), and has its examples like:
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M(z; 1/2) = 1/
√
π exp(−z2/4), and the Airy function:

M(z; 1/3) = 32/3 Ai(z/31/3).
In this case (m = 2, γ1 = γ2 = 1) we have also the Lommel, Struve and

classical Bessel functions (details in [16], [18], etc.)

Case 3. Again, let γ1 = · · · = γm = 1, take m ≥ 2, and see details in [16],
[18]. One special case then is the generalized Lommel–Wright function with
4 indices (µ > 0, q ∈ N, ν, λ ∈ C), introduced by de Oteiza, Kalla and Conde
(details in [18]):

J µ, q
ν, λ (z) = (z/2)ν+2λ J̃ µ, q

ν, λ (z), z ∈ C \ (−∞, 0],

with J̃ µ, q
ν, λ denoting the entire function

J̃ µ, q
ν, λ (z) =

∞∑

k=0

(−1)k(z/2)2k

(Γ(λ+ k + 1))q Γ(ν + kµ+ λ+ 1)
. (42)

Now, again by (24)

J̃ µ, q
ν, λ (z) = E

(1,1,...,1), q+1
(µ,1,...,1), (ν+λ+1, λ+1,..., λ+1) (−(z/2)2) (43)

= 1Ψq+1

[
(1, 1)

(λ+ 1, 1)q1, (λ+ ν + 1, µ)

∣∣∣∣− (z/2)2
]

= H1, 1
1, q+2

[
(z/2)2

∣∣∣∣
(0, 1)

(0, 1), (−λ, 1)q1, (−λ− ν, µ)

]
.

This is an interesting example of a multi-index M-L function with arbitrary
m = q + 1.

Some other interesting cases are given below.
Obviously for q = 1, the special function (42) turns into the generalization

of the Bessel function Jν(z), introduced by Pathak (for details, see again [18]):

Jµ
ν, λ(z) = (z/2)ν+2λ J̃µ

ν, λ(z), z ∈ C \ (−∞, 0],

where J̃µ
ν, λ denotes the entire function

J̃µ
ν, λ(z) =

∞∑

k=0

(−1)k(z/2)2k

Γ(λ+ k + 1)Γ(ν + kµ+ λ+ 1)
(44)

and

J̃µ
ν, λ(z) = E

(1,1), 2
(µ,1), (ν+λ+1, λ+1) (−(z/2)2) (45)

= 1Ψ2

[
(1, 1)

(λ+ 1, 1), (λ + ν + 1, µ)

∣∣∣∣− (z/2)2
]

= H1, 1
1, 3

[
(z/2)2

∣∣∣∣
(0, 1)

(0, 1), (−λ, 1), (−λ − ν, µ)

]
,
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that is obtained by setting q = 1 in (43).

For particular choices of the other parameters λ and µ we obtain results for
more particular cases as follows.

Let λ = 0, then the special function (44) produces the generalization of the
Bessel–Clifford function Cν(z) = z−ν/2Jν(2

√
z), introduced by Wright [38], and

called Bessel–Wright or Bessel–Maitland function, as an alternative denotation
for the already discussed Wright function (41) with m = 2. See e.g. [18], [38],

Jµ
ν (z) =

∞∑

k=0

(−z)k

k! Γ(ν + µk + 1)
= E

(1,1), 2
(µ,1),(ν+1,1)(−z) (46)

and, along with (45), we have

Jµ
ν (z) = 0Ψ1

[ −−
(ν + 1, µ)

∣∣∣∣− z

]
= H1, 0

0, 2

[
z

∣∣∣∣
−−

(0, 1), (−ν, µ)

]
. (47)

As mentioned before, initially, Wright (Sir Edward Maitland Wright) defined
(46) only for µ > 0, and on a later stage he extended its definition to µ > −1.

Additionally, if µ = 1, then (44) becomes the classical Bessel function of
the first kind

Jν(z) = (z/2)ν J̃ν(z), z ∈ C \ (−∞, 0],

where J̃ν is the entire function

J̃ν(z) =

∞∑

k=0

(−1)k(z/2)2k

k!Γ(k + ν + 1)
= E

(1,1), 2
(1,1), (ν+1, 1)(−(z/2)2) (48)

= 0Ψ1

[ −−
(ν + 1, 1)

∣∣∣∣− (z/2)2
]
= H1, 0

0, 2

[
(z/2)2

∣∣∣∣
−−

(0, 1), (−ν, 1)

]
.

The latest relation follows by setting µ = 1 in (46), or λ = 0 and µ = 1 in (45).

Case 4. We emphasize here on the more specific case of the so-called hyper-
Bessel functions. Again, let γ1 = · · · = γm = 1, take m ≥ 2, and see details in
Kiryakova [13, Ch.3], and papers like [16], [18], etc. If additionally, we let
∀αi = 1, i = 1, . . . ,m, then:

E
(m)
(1,1,...,1),(βi)

(z) = 1Ψm

[
(1, 1)

(βi, 1)m1

∣∣∣∣ z
]

= [

m∏

i=1

Γ(βi)]
−1

1Fm (1;β1, β2, . . . , βm; z)

reduces to 1Fm- and to a Meijer’s G1,1
1,m+1-function. Denote βi = γi+1, i =

1, . . . ,m, and let additionally one of the βi to be 1, say: βm = 1, i.e. γm =0.
Then the multi-index M-L function becomes a hyper-Bessel function, in the
sense of Delerue (1953); see Kiryakova [13], App.,(D.30) and Ch.3:
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J (m−1)
γi,...,γm−1

(z) =
( z

m

)m−1∑

i=1

γi
E

(m)
(1,1,...,1),(γ1+1,γ2+1,...,γm−1+1,1)

(
−(

z

m
)m

)
(49)

=

[
m−1∏

i=1

Γ(γi+1)

]−1( z

m

)m−1∑

i=1

γi
0Fm−1

(
γ1+1, γ2+1,..., γm−1+1;−(

z

m
)m
)
.

In view of the above relation, the multi-index M-L functions with 2m-parameters
and with arbitrary (α1, . . . , αm) 6= (1, . . . , 1) can be seen as fractional-indices
analogues of the hyper-Bessel functions (49), which themselves are multi-index
analogues of the Bessel function. The functions (49) are closely related to the
hyper-Bessel operators, introduced by Dimovski (1966), see details in Kiryakova
[13, Ch.3], and to the normalized hyper-Bessel functions, which we can call as
Bessel-Clifford functions of m-th order:

Cν1,...,νm(z)=

∞∑

k=0

(−1)kzk

Γ(ν1+k+1) . . .Γ(νm+k+1) k!

= E
(m+1)
(1,...,1),(ν1+1,...,νm+1,1)(−z).

Remark 15. Let us consider the exponential function (38), Bessel function
(47) and Bessel–Maitland function (48). Let us pay attention to the formula
(21). Taking into account that the numerators of their integrands, respectively

H1, 0
0, 1(−s) = Γ(s), H1, 0

0, 2(−s) =
Γ(s)

Γ(1 + ν − s)
,

H1, 0
0, 2(−s) =

Γ(s)

Γ(1 + ν − µs)
,

have no poles for Re(s) > 0, then the contour L may lie down in the whole
right half-plane. Thus the strip (19) turns into the right half-plane Re(s) > 0.

6. Mellin transforms for the special cases of the multi-index
Mittag-Leffler functions

Using the results in the previous sections, we give the Mellin transform images
of the functions discussed in Section 5. Most of them are also special cases of
the 2m-functions (5). That is why we mainly use the relation (34), supposing
that the variable t is positive and the parameters αi > 0 for all the i = 1, ...,m,
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m ∈ N. We categorize the results in several groups depending on their kinds
and representations.

Starting with the case 0 < Re(s) < 1, we firstly consider Dzrbashjan’s M-L
type functions (40), with α1 = 1/ρ1 > 0 and α2 = 1/ρ2 > 0. Then, due to (34)
for m = 2, the following Mellin image is obtained

M[E(1/ρ1,1/ρ2),(µ1,µ2)(−t)](s) = H1, 1
1, 3(−s) =

Γ(s)Γ(1−s)

Γ(µ1−s/ρ1)Γ(µ2−s/ρ2)
. (50)

Using (36) and (37), the relation (34) taken with m = 1 and α > 0 gives the
result for the two-parametric Mittag-Leffler function Eα,β:

M[Eα,β(−t)](s) = H1, 1
1, 2(−s) =

Γ(s)Γ(1− s)

Γ(β − αs)
, (51)

and if additionally β = 1, it reduces to the Mellin image for Eα,

M[Eα(−t)](s) = H1, 1
1, 2(−s) =

Γ(s)Γ(1− s)

Γ(1− αs)
. (52)

Further, taking m = q + 1 and µ > 0, (34) along with (43) give the Mellin
transform of the function J̃ µ, q

ν, λ , related to the Lommel–Wright function, namely

M[J̃ µ, q
ν, λ (2t

1/2)](s)=H1, 1
1, q+2(−s)=

Γ(s)Γ(1−s)

Γ(1+λ+ν−µs)
q∏

i=1
Γ(1+λ−s)

. (53)

If additionally q = 1 and in view of (45), the result refers to the generalized
Bessel–Wright function, i.e.

M[J̃ µ
ν, λ(2t

1/2)](s) = H1, 1
1, 3(−s) =

Γ(s)Γ(1− s)

Γ(1 + λ− s)Γ(1 + λ+ ν − µs)
. (54)

Now we continue with the case Re(s) > 0. According to (47) and Remark
15, and taking µ > 0, we obtain the Mellin transform image of the Bessel-Wright
(Bessel-Maitland) function (46)

M[J̃ µ
ν (t)](s) = H1, 0

0, 2(−s) =
Γ(s)

Γ(1 + ν − µs)
, (55)

or in the denotation (41), for the Wright function:

M[φ(α, β; t)](s) =
Γ(s)

Γ(β − αs)
, Re(s) > 0. (56)

Further, taking µ = 1, the formula (55) becomes the image of the entire
function (48) related to the Bessel function, namely
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M[J̃ ν(2t
1/2)](s) = H1, 0

0, 2(−s) =
Γ(s)

Γ(1 + ν − s)
. (57)

Finally, in view of (38), the Mellin transform of the exponential function is

M[exp(−t)](s) = H1, 0
0, 1(−s) = Γ(s). (58)

Many more Mellin transform images of the mentioned particular cases of
the multi-index M-L functions can be easily derived by suitable choice of pa-
rameters.
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