ON HYPER ZAGREB INDEX OF CERTAIN
GENERALIZED GRAPH STRUCTURES
Zhen Wang1, Natarajan Chidambaram2
Selvaraj Balachandran3 1School of Computer Engineering
Anhui Wenda University of Information Engineering
Hefei - 230032, CHINA 2 Department of Mathematics
Srinivasa Ramanujan Centre
SASTRA Deemed University
Kumbakonam - 612 001, INDIA 3Department of Mathematics, School of Arts
Sciences and Humanities, SASTRA Deemed to be University
Thanjavur - 613 401, Tamilnadu, INDIA
Let be a graph with vertices and edges. The hyper Zagreb index of , denoted by , is defined as
where denotes the degree of a vertex in . In this paper we compute the hyper Zagreb index of certain generalized graph structures such as generalized thorn graphs and generalized theta graphs. Also,for the first time, we determine exact values for hyper Zagreb index of some cycle related graphs, namely cycle with parallel chords, cycle with parallel chords and shell type graphs.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] S. Akhter, M. Imran, Computing the forgotten topological index of four
operations on graphs, AKCE Int. J. Graphs Comb., 14 (2017), 70-79.
[2] S. Akhter, M. Imran, M.R. Farahani, Extremal unicyclic and bicyclic
graphs with respect to the F-index, AKCE Int. J. Graphs Comb., 14
(2017), 80-91.
[3] M. Azari, A. Iranmanesh, Chemical graphs constructed from rooted product and their Zagreb indices, MATCH Commun. Math. Comput. Chem.,
70 (2013), 901-919.
[4] M. Azari, A. Iranmanesh, I. Gutman, Zagreb indices of bridge and chain
graphs, MATCH Commun. Math. Comput. Chem., 70 (2013), 921-938.
[5] J. Carraher, M. Thomas Mahoney, G.J. Puleo, D.B. West, Sum paintability
of generalized theta-graphs, Graphs and Combinatorics, 31, No 5 (2015),
1325-1334.
[6] C.M. da Fonseca, D. Stevanovic, Further properties of the second Zagreb
index, MATCH Commun. Math. Comput. Chem., 72 (2014), 655-668.
[7] K.C. Das, K. Xu, I. Gutman, On Zagreb and Harary indices, MATCH
Commun. Math. Comput. Chem., 70 (2013), 301-314.
[8] H. Deng, D. Sarala, S.K. Ayyaswamy, S. Balachandran, The Zagreb indices
of four operations on graphs, Appl. Math. Comput., 275 (2016), 422-431.
[9] W. Gao, M.K. Jamil, M.R. Farahani, The hyper-Zagreb index and some
graph operations, J. Appl. Math. Comput., 54 (2017), 263-275.
[10] I. Gutman, E. Milovanović, I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb., https://www.sciencedirect.com/science/article/pii/S0972860017302359.
[11] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH
Commun. Math. Comput. Chem., 50 (2004), 83-92.
[12] I. Gutman, B. Ručič, N. Trinajstić, C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (1975), 3399-3405.
[13] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total πelectron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972),
535-538.
[14] A. Hamzeh, A. Reti, An analogue of Zagreb index inequality obtained from
graph ir-regularity measures, MATCH Commun. Math. Comput. Chem.,
72 (2014), 669-683.
[15] A. Heydari, I. Gutman, On the terminal Wiener index of thorn graphs,
Kragujevac J. Sci., 32 (2010), 57-64.
[16] A. Joseph Gallian, A dynamic survey of graph labeling, Electr. J. of Combinatorics, 21 (2018).
[17] K.M. Kathiresan, C. Parameswaran, Certain generalized thorn graphs and
their Wiener indices, J. of Appl. Mathematics and Informatics, 30, No 5-6
(2012), 793-807.
[18] M. Liu, B. Liu, Second Zagreb indices of unicyclic graphs with given degree
sequences, Discrete Appl. Math., 167 (2014), 217-221.
[19] M. Liu, F. Li, K.C. Das, Ordering the Zagreb coindices of connected
graphs, MATCH Commun. Math. Comput. Chem., 70 (2013), 939-948.
[20] A. Milićević, S. Nikolić, N. Trinajstić, On reformulated Zagreb indices,
Mol. Divers., 8 (2004), 393-399.
[21] S.K. Nilanjan De, A.P. Mohammed Abu Nayeem, F-index of some graph
operations, Discrete Mathematics, Algorithms and Applications, 8, No 2
(2016), 1-17.
[22] D. Sarala, H. Deng, C. Natarajan,S.K. Ayyaswamy, F index of graphs
based on four new operations related to the strong product, AKCE Int. J.
Graphs Comb., https://www.sciencedirect.com/science/
article/pii/S0972860018300264.
[23] G. Sathiamoorthy, T.N. Janakiraman, Graceful labeling of generalized
theta graphs, National Academy Science Letters, 41, No 2 (2018), available
online.
[24] G.H. Shirdel, H. Rezapour, A.M. Sayadi, The hyper Zagreb index of graph
operations, Iranian J. of Math. Chemistry, 4, No 2 (2013), 213220.
[25] S. Elumalai, T. Mansour, M. Ali Rostami, G.B.A. Xavier, A short note on
hyper Zagreb index, Boletim da Soc. Paranaense de Matematica (BSPM),
37, No 2 (2019), 51-58.
[26] Y.B. Venkatakrishnan, S. Balachandran, K. Kannan, On the eccentric connectivity index of generalized thorn graphs, National Academy Science
Letters, 38, No 2 (2015), 165-168.
[27] M. Veylaki, M.J. Nikmehr, H.A. Tavallaee, The third and hyper-Zagreb
coindices of graph operations, J. Appl. Math. Comput., 50 (2016), 315325.
[28] D. Vukičevič, A. Graovac, On modified Wiener indices of thorn graphs,
MATCH Commun. Math. Comput. Chem., 50 (2004), 93-108.
[29] K. Xu, The Zagreb indices of graphs with a given clique number, Appl.
Math. Lett., 24 (2011), 1026-1030.
[30] K. Xu, K.C. Das, S. Balachandran, Maximizing the Zagreb indices of
(n, m)-graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 641654.
[31] W. Yuan, X. Zhang, The second Zagreb indices of graphs with given degree
sequences, Discrete Appl. Math., 185 (2015), 230-238.
[32] B. Zhou, A. Graovac, D. Vukičevič, Variable Wiener indices of thorn
graphs, MATCH Commun. Math. Comput. Chem., 56 (2006), 375-382.
[33] B. Zhou, D. Vukičevič, On Wiener-type polynomials of thorn graphs, J.
Chemometrics, 23 (2009), 600-604.