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where dg(v) denotes the degree of a vertex v in G. In this paper we compute the
hyper Zagreb index of certain generalized graph structures such as generalized
thorn graphs and generalized theta graphs. Also,for the first time, we determine
exact values for hyper Zagreb index of some cycle related graphs, namely cycle
with parallel P chords, cycle with parallel C} chords and shell type graphs.

AMS Subject Classification: 05C07, 05C35, 05C40
Key Words: Zagreb index; hyper Zagreb index; thorn graphs; generalized
thorn graphs; generalized theta-graphs

Received:  June 17, 2019 © 2019 Academic Publications

§Correspondence author



1000 Z. Wang, N. Chidambaram, S. Balachandran

1. Introduction

Mathematical calculations are absolutely necessary to explore important con-
cepts in chemistry. In mathematical chemistry, molecules are often modeled
by graphs named “molecular graphs. A molecular graph is a simple graph in
which vertices are the atoms and edges are bonds between them. By IUPAC
terminology, a topological index is a numerical value for correlation of chemi-
cal structure with various physical properties, chemical reactivity or biological
activity.

In chemical graph theory, a graphical invariant is a number related to a
graph which is structurally invariant. These invariant numbers are also known
as the topological indices. The well-known Zagreb indices are one of the oldest
graph invariants firstly introduced by Gutman and Trinajesti¢ [13] more than
forty years ago, where Gutman and Trinajsti¢ examined the dependence of total
m-electron energy on molecular structures, and this was elaborated on in [12].

Throughout this paper we consider only simple and connected graphs. For
a graph G = (V, F) with vertex set V = V(G) and edge set F = E(G), the
order (number of vertices) and size (number of edges) of G are denoted by n and
m respectively. The degree of a vertex v in G is the number of edges incident
to v and denoted by dg(v).

For a (molecular) graph G, the first Zagreb index M;(G) and the second
Zagreb index Ms(G) are, respectively, defined as follows:

My = = Y dylv), My= = Y dolu

veV(Q) weE(G)

Also, M1(G) = > [dg(u) + dg(v)]. For more details on these indices see
weF(G)
the recent papers [3, 4, 6, 7, 8, 11, 14, 18, 19, 29, 30, 31] and the references
therein.
Milicevi¢ et al. [20] in 2004 defined reformulated the Zagreb indices in terms
of edge degrees instead of vertex degrees as:

EM, (G Z d(e
ecE(G)
and

EM(G) =) _d(e)d(f)

e~f
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where d(e) represents the degree of the edge e in GG, which is defined by d(e) =
d(u) 4+ d(v) — 2 with e = uv and e ~ f represents that the edges e and f are
adjacent.

Shirdel et al. in [24] defined hyper Zagreb index, as:

HM(G)= ) (dg(u)+da(v))®
weE(G)

and discussed some graph operations of the hyper Zagreb index in [24].

Gao et al. [9]presented exact expressions for the hyper-Zagreb index of
graph operations containing cartesian product and join of n graphs, splice, link
and chain of graphs. Veylaki et al. [27] calculated third and hyper Zagreb
coindices of graph operations containing the Cartesian product and composi-
tion. Suresh Elumalai et al. [25] obtained some bounds on the hyper Zagreb
index. An excellent survey of several variants of Zagreb indices has been done
by Gutman et al. in [10].

Vukicevic et al. [28] calculated the modified Wiener index of thorn graphs.
In [32] Zhou et al. found an explicit formula to calculate the variable Wiener
index of thorn graphs. Zhou et al.[33] derived the expression for Wiener-type
polynomials of thorn graphs. Heydari et al. [15] calculated terminal Weiner
index of thorn graphs. Nilanjan De et al. computed F-index of t-thorn graphs
in [21]. For recent results on F-index, please refer [1, 2, 22]. K.M.Kathiresan et
al.[17] obtained some bounds on the Wiener index of certain generalized thorn
graphs. Venkatakrishnan et al. [26] computed eccentric connectivity index of
the same structures.

1.1. Hyper Zagreb index of generalized thorn graphs

The t-thorn graph of a graph G, denoted by G, is a graph obtained by joining
t copies of pendent edges known as thorns to each vertex of G.

In this section, we compute the Hyper Zagreb index of the following four
types of generalized thorn graphs.

Let G be a graph of order n and size m respectively. Let V(G) = {v1,ve,- -,
Un}.

Generalized thorn graph of Type-I

Attach t; copies of a path of order r > 2 at each vertex v; of G by identifying
the vertex v; as the initial vertex of such paths. The resulting graph thus
obtained is denoted by Gp.

Generalized thorn graph of Type-II
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Attach t; copies of a cycle of length r to each vertex v; of G by identifying
v; as a vertex in each cycle. The resulting graph thus obtained is denoted by
Ge.

Generalized thorn graph of Type-III

Attach t; copies of a complete graph K, of order r > 3 to each vertex v; of
G by identifying v; as a vertex in K,. The graph thus obtained is denoted by
Gk.

Generalized thorn graph of Type-IV

Attach ¢; copies of a complete bipartite graph K, ; to each vertex v; of G
by identifying v; as a vertex in a partition of K, ¢ containing r vertices. The
resulting graph thus obtained is denoted by G 4.

Generalized thorn graph of Type-V

Generalized thorn graph of Type-VI
To every vertex v; of G, join t; copies of K, each by an edge. The graph
thus obtained is denoted by G’K.

Generalized thorn graph of Type-VII
To every vertex v; of G, join t; copies of a complete bipartite graph K, ¢
each by an edge.

Theorem 1. HM(Gp)=HM(G)+2 > [d(v;)+ d(vj)]
Ui’U]'GE(G)

x (ti+t;)+ > (ti+1t;)% + (16r — 35)
viv; €E(G)

+ Yt 4 > [tid(vi)? + 6] + 462 + 263d(v;) + 4tid(v;)].
=1 =1

Proof. In the generalized thorn graph Gp of G, dg, (vi) = d(v;) + t;, for
any vertex v; € V(G). Therefore,

M(Gp)= Y [dv) +d(v;)]

Ui’UjGE(Gp)

= > [d(vi) +ti+ d(vg) + t5)°

Uivj EE(GP)

—|—Zt (v3) +t; +2)* + 16(r — 3 Zt +9Zt2
i=1 =1
=HM(G)+2 Y [d(vi) +d(vy)] (t: +t5)

’Ui’U]'GE(G)
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+ Z (ti +1t5) Zn:ti [d(v:)® + (t; +2)* + 2d(v;) (t; + 2)]
i=1

v v; EE(G)

+(16r —35) ) t;
=1

=HM(G)+2 > [d(vi)+d(vj)] (t; +t;)
viv;€E(Q)

+ ) ) D [td(vi)? + £+ 487 + 267 d(v;) + 4tid(v;)]
’UinEE(G) =1

+(16r —35) ) t;.
=1

O

Corollary 2. Ift; =t, for all 1 < i < n, then HM(Gp) = HM(G) +
5t My (G) + 8mt? + nt3 + 4nt? + 16mt + 16rnt — 35nt.

Example 3. (i) If G = P, and t; =t for all 1 <1i <n, then HM(Gp) =
16n + (12n — 8)t? + 16nt(r + 1) — 15nt — 46t — 30. In particular, if r = 2,
we get the thorn tree T (refer Figure 1) and HM(T) = 16n + (12n —
8)t% + 33nt — 46t — 30.

(i) fG=Cy andt; =t for all 1 <i <n, then HM(Gp) = 16n(rt+ 1) +nt +
12nt? + nt®.

Theorem 4. HM(Gc)=HM(G)+4 > [d(v;)+ d(vj)]
Uﬂ)jEE(G)

X (ti+t;)+4 > (ti+t)?+2 tid(v;)?
viijE'(G) =1

+ 8% [d(vi)t? + d(vi)t; + t3 + 2t2] + (16r — 24) Y- t;
=1 =1

Proof.
HM(Ge)= > [d(v) +d(v))]?

vV EE(Ge)
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Figure 1: Thorn tree T

= D ldw)2ti +d(v) +2t)°

viv; €E(G)
= HM(G)+4 Y [d(vi)+d(v)] (t; +t;)
UivjEE(G)
+4 (ti + 1) +22t 2 4 dd(vg)(t; + 1) + 4t2

+8t; +4) + (16r — 32) Zt

=HMG)+4 Y [d(vi) +d(v))] (i +t5)
viv; EE(G)

+4Y D (ti+ty) —i-QthvZ
vivjEE(G)
+SZ (0)t7 + d(vi)ti + ] + 267] + (161 — 24) > "t
=1

Corollary 5. Ift; =t, for all 1 < i < n, then HM(G¢) = HM(G) +
10t M (G) + 32mit? + 16mt + 8nt> + 16nt? + (16r — 24)nt.

Example 6. (i) If G = P, and t; =t for all 1 <1i <n, then HM(G¢) =
8nt3 + 48nt? + 32nt + 16n(rt + 1) — 32t2 — 76t — 30.

(ii) If G = O, and t; =t for all 1 < i < n, then HM(G¢) = 8nt3 + 48nt? +
32nt + 16n(rt + 1).
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Theorem 7. HM(Gg)=HM(G)+2(r—1) > [d(v;)+d(vj)]

Uﬂ)jEE(G)
X (ti+t)+(r—1)2 3 (ti+t)?+(r—1)

viv; EE(G)
< 3 () + 2 = 17 3 d(w)ti(ti+ 1)+ (7= 1P X [ +262 + (2r = 1)t].
o =1 i=1
Proof.
v;0;€E(Gr)
= 3 ld(w) + tilr — 1) + d(vg) + t;(r — 1))
viv; €E(G)

+(r - 1) t; [d(v;) + ti(r = 1) + (r — 1))
=1

(T_l i Zt 9 — 2)2

=HM(G)+2(r—1) Y [d(v;)+d(vy)][ti + 1;]

viv;€E(G)
Hr=17 > (ti+t))
viv;€E(G)
2 2
r—th )% +2(r — Dd(v;)(t; + 1) + (r — 1)(t; + 1)?]

= HM(G) +2(r — 1) Z [d(vi) + d(v;)] [ti + 1]

+(r — 1) Z (ti+t;) +(r—1 thvl
'UUJGE(G)

n

2(r —1) Zdvl (t+ 1) + (r =12 [talti + 1)* + 2(r — 2)t;]

i=1
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=HM(G)+2(r—1) Y [d(v;)+d(v))][ti +t;]

viv; €E(G)
+(r —1)? Z (ti +t)>+ (r—1) thvz
viijE'(G)
2(r —1) Zdvl (i 1)+ (r = 12> [8+ 267 + 2(r — 1]

i=1

Corollary 8. Ift; =t, foralll <i<n, HM(Gg) = HM(G) + 5t(r —
DM (G) +4mt(t +1)(r — 1)2 +n(r — 13 + 262 + 2(r — 1)t)

Example 9. (i) If G= P, and t; =t for all 1 < i <n, then HM(Gf) =
161 — 30 + (20n — 30)t(r — 1) + (r — 1)%(n(r — 1)#3
+(2n — 4)t2 + (6n — 4)t + 2nrt(r +t — 2)).

(ii) fG=C, andt; =t foralll <i<mn, then HM(G) = 16n+20nt(r —1) +
dnt(t+1)(r — 12 +n(r — 13 + 262 + 2(r — 1)t).

Theorem 10. HM(G4)=HM(G)+2s Y [d(v;)+ d(vj)]

UZ'UjEE(G)
X (6 +t5) + > sty [d(vi) + 7+ % + 12 + st; + 2rs].
=1
Proof.
M(Ga)= Y [dvi)+d(v))]
vV EE(G 4)
= > [dw) +tis + d(vy) + t;s]°
viv; €E(G)
+> stild(vi) +tis + ] + > tis(s+7)
=1 =1

=HM(G)+2s Y [d(v;)+d(v))] (t: + t;)
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n
+ Z st; [d(vi) +r4+s2+r?+ st + 2?”8]
i=1
O

Corollary 11. Ift; =t, for all 1 <1i < n, then HM(G4) = HM(G) +
4tsMy(G) + 2mst + st(r + s2 + r¥)n + s?t?n + 2rs’tn. Further, if r = s, then
HM(GA) = HM(G) + 4tsM(G) + 2mst 4+ ns’t + ns’t? 4 2tns>.

Example 12. (i) If G = P,, t; =t forall 1 < i < n and r = s, then
HM(GA) = 16n — 30 + 18nst — 265t + ns’t + ns’t? + 2tns>,

(i) fG=Cy, ti=tforalll <i<nandr =s, then HM(G4) = 16n +
18nst + nst + ns?t? + 2tns>.

Theorem 13. HM(Gy) = HM(G)+2 > [d(v) +d(v))]
’UinEE(G)

x (ti+t)+ > (ti+t)?+M(G)+2Y d(v)t;
vinGE(G) 1=1

+ 3 [t + (16r — 24)t;] + 9In + 12m.

/ 2
AMG) = 2 |dg () +dgy ()]
viijE'(Glc)
n

= > ld(w)+ti+d(V) + 7+ D [d(vi) +t; + 3]
viv; €E(G) i=1

n n
+50 ) ti+16(r—2))
=1 =1

=HM(G)+2 > [d(v)+d(v;)] (t +1;)
v EE(G)

+ > (ti+tj)2+zn:d(vi)2
=1

Vi Vj €EE(G)
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+2 zn: d(vi) (t; + 3) + Zn:(ti +3)2 450 zn:ti +16(r — 2) Xn: t;
=1 =1 =1 =1
=HM(G)+2 > [d(v)+d(v;)] (t +1;)
ijeE(G)
+ > (ti+ty)’ 4+ Mi(G)

'uzvj EE(G)

—|—2Zdvzt +Z [t2 + (167 — 24)t;] + 9n + 12m

Corollary 14. Ift; =t, for all 1 <1 < n, then
HM(Gp) = HM(G)+(4t+1) M (G) +4mt (t+1)+nt? +nt(16r —24) +12m+9n.

Example 15. (i) IfG = P, andt; =t forall 1 < i <n, then HM(G) =
(5n — 4)t% + dnt(4r — 1) + 12(n — t) — 44,
(i) If G = C, and t; =t for all 1 < i < n, then HM(Gy) = 29n +nt(t — 4) +
16n(rt +1).

Theorem 16. HM(G/K) =HMG)+2 5 [d(v)+d(vj)]

v v; EE(G)
x (ti+t)+ > (ti+t)?+ > tid(v;)
’UinEE(G) i=1
+ > t? + (27”4 —6r3 —10r2 + 157) > t;.
i=1 1=1
Proof.
, 2
MG = Y [dg @) +dg ()]
viijE'(Gl )
= > [dw) +ti +d(vy) + 1] +Zt vi) + ti + 7]
viv; EE(G) i=1

—|—2iti(2r— 1)2 + [T(T_ }zn:ti(%—z)Q
i=1 =1
=HM(G)+2 Y [dw)+dw)](ti+t;)+ > (ti+1)

UZ'U]'GE(G) UZ'U]'GE(G)
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n n n n
+ Ztid(vi) + Zt? —I—thi + 27“(?” — 1)32151‘
=1 =1 =1 =1

— 8(7“ — 1)2 i t; = HM(G) + 2 Z [d(’Uz) + d(’Uj)] (ti + tj)

1=1 UinEE(G)

+ ) (titty) +thuz +Zt2 +2r(r=1)° = 8(r=1)* + 7] ) _t;.

Ui’U]'GE(G) =1

Therefore,

M(Gy)=HM(G)+2 Y [d(v) +d(v))] (t: + t;)

’Ui’U]'GE(G)
+ Y (ti+ty)
vv; EE(G)
n n n
+ 3 td(v) + Yt 4 (20 = 6r% — 1007 +15r) > ¢
=1 =1 =1

Corollary 17. Ift; =t, for all 1 < i < n, then HM(Gy) = HM(G) +
4t M1 (G) + 4mt? 4 2mt + nt? + (2r* — 673 — 1072 + 15r)nt.

Example 18. (i) IfG = P, andt; =t forall 1 <i < n, then HM(G) =
16n — 30 4 (18n — 10)t + (5n — 4)t% + (2r* — 6r3 — 10r2 + 15r)nt,

(ii) If G = C, and t; =t for all 1 < i < n, then HM(GY) = 16n + (5t +
18)nt + (2r* — 6r3 — 1012 4 15r)nt.

Theorem 19. HM(G;X) =HM(G)+ > [d(v)+d(vy)]

’Ui’U]'GE(G)
X (ti+t)+ > (fi+t)?+ D td(v)? + 23 d(v) + Y
viv;€E(G) i=1 i=1 i=1

n n n
+2(s+1) Y dwi)t; +23 2 + (s +3s+2s(s+r)(s+r+1)+1) X t;
=1 =1 =1
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HMGy) = Y [dg () +dg ()]

ViV EE(G;‘)

= 3 [dw) + b+ d(vy) + )

=1
+D tis[sHr+ 1P+ tis(s+1)?
=1 i=1
= HM(G)+2 > [d(v;) +d(v))] (t: +t;)
viijE'(G)
+ Y (titty)?
vv; EE(G)

+ )t [(d(vs) + 1)% + (ti + 8)° + 2(d(vi) + 1) (t; + 9)]

+) tis[(s+r+1)2+(s+7)?

=1
= HM(G)+2 > [dv;)+d(v))] (t: +t;)
viv; €E(G)
+ Y (ti+ty) +Zt )2 4 2d(v;) + 1]
UZ'UjEE(G)
+Z ti(t + 2st; + 57)] +QZ (ti + 5)(d(v;) + 1)]

St b 2 ) 1) 07
1=1
=HM@G)+2 Y [d(vi) +d(v))] (t; + ;)
viv; EE(G)

+ ) (ti+tj)2+zn:tid(vi)2
=1

ViVj €EE(G)
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n n n
2> td(v) + Y 25+ 1) Y dvi)t;
=1 =1 =1

n n
25+ 1)) 2 (P 3s+2(s+r)(s+r+ 1)+ 1) 1
i=1 i=1

O

Corollary 20. Ift; =t for all 1 < i < n, then HM(G'y) = HM(G) +
3tM1(G) + 8mt? + nt3 4+ 4mit(s + 1) 4+ 2nt?(s + 1) + (s> + 3s + D)nt + 2s(s +
r)(s+ 7+ 1)nt.

Example 21. (i) If G = P,,t; =t for all 1 < i < n and r = s, then
HM(G',) = 16n — 30 + 17nt — 10t 4 10nt> — 8> + nt> + 1lnst — 4st +
2nst? + 9ns’t. Further if r = s = t, then HM(G') = 16n — 30 + 35n7r +
12n7r3 + (21n — 12)7? — 10r.

(i) If G = C,,t; =t for all 1 < i < n and r = s, then HM(G',) = 16n +
17nt + 10nt? + 11nst + Ins’t + 2nst®> + ntd. Further if r = s = t, then
HM(G')) = 16n + 17nr + 21nr? + 12n2°.

1.2. Hyper Zagreb index of generalized theta graphs

In this section, we compute the hyper Zagreb index of some generalized theta-
graphs.

Definition 22. ([5]) The generalized theta-graph O(l1,ls, - -- i) consists
of two vertices v and v joined by internally disjoint paths of lengths l1, o, - - -, l§.

A particular case of this structure can be found in [23].

Definition 23. A book By is a generalized theta-graph ©(2,2,--- ,2) that
consists of k internally disjoint paths of length 2.

Definition 24. The hanging generalized theta-graph
Go = G(01,09, - ,0.5u1,u2, - ,u,), where ©; = O(li1, lin, -+, Lig,);
1 <4 < r,is a graph obtained by attaching a generalized theta-graph ©; to a
vertex u; of the path P, =< uq,uo, - ,u, > of length r — 1 after identifying u;
as a vertex of ©);.
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Theorem 25. For a generalized theta-graph © = O(ly,la, -+ 1), HM(O)
k
=2k(k+2)?+16 > (I; — 2).
i=1

Proof. Let u and v be two vertices of © which are joined internally by k
disjoint paths of lengths 1,15, - - , I respectively. Then dege(u) = dege(v) =
k,

HM(©)= Y (deg(x)+deg(y))*
PN ACC))]

k
=2k(k+2)>+16 Y (I —2).
=1

Corollary 26. Ifly =1y =---=1, =n—1, then
HM(©) = 2k(k + 2)* + 16k(n — 3).

Example 27. For a book graph By, HM (By,) = 2k(k + 2)%.

Theorem 28. For a hanging theta—graphs Go,
HM(Qe)—2Z/€(/f 132416 Z(z] 2)

zl]

+ (k1 + ko 4+ 3)* + (kr—1 + kr + 3)* + Z (ki + kiyq +4)2,
=2
where r > 2.

Proof. In Ge, d(u1) = k1 + 1, d(u,) =k + 1 and (u;) = k; +2, for 2 <
i <r—1. So, )
M(Ge)= Y (d(z)+d(y))?

wyGE(ge)

_QZk (ki +3) +1GZZ -

=1 j=1

[\

r—

4 (ky 4 ko +3)% 4+ (kroy + ke + 32+ (ki + ki +4)2

@
||
N
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Corollary 29. Ifl;; =n—1foralll < j < k; and1 < ¢ < r, then
I8

HM(Go) =2 ki(ki +2)% +16(n — 3) > ki + (k1 + ko +3)2 + (ky + kp1 +
=1 =

1

r—2
8)? + 3 (ki + ki1 +4)%.
=2

Corollary 30. Ifl;; =n—1foralll <j<k;andl <i<randky =ko=
o=k, =k, then HM (Gg) = [2rk + 4r — 16] (k+2)%+16rk(n—3)+2(2k+3)2.

1.3. Hyper Zagreb index of some cycle related graphs

In this section we compute exact values for hyper Zagreb index of cycle related
graphs such as cycle with parallel Py chords, cycle with parallel C chords and
shell type graphs. The definitions which we use in this section are taken from
[16].

1.3.1. Cycle with parallel P, chords

Definition 31. A cycle with parallel P, chords, denoted by, C(n, Py) ia a
graph obtained from a cycle C,, : (v, v1,- -+ ,vp_1v0) of order n > 6 by adding
disjoint paths Py of order k between the pairs of vertices (v1,v,—1), (v, vp—2),

-, (Va,vg) of C, where a = L%J —1land g = L%J + 1, if n is even and
B=12|+2, if nis odd.

(16k +2) [ 2] + 36n — 16k — 46,
if n is even,
(16k +2) | % | + 36n — 16k — 66,
if n is odd.

Theorem 32. HM [C(n, Py)] =

Proof. Case 1: n is even.
First, we observe the following edge partition in C(n, Py)

Edge uwv with (d(u),d(v)) | Number of edges
(2,2) alk —3)
29 IBES
(3,3) n-4

where oo = L%J —1.
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v10 vg

Figure 2: Cycle C(18, P5) with parallel P5 chords

Vo

Figure 3: Cycle C(17, P5) with parallel P5 chords

Now,
HM [C(n, Py)] = 16a(k — 3) + 50 (LSJ + 1) +36(n — 4)
= (16k + 2) LgJ + 360 — 16k — 46.

Case 2: n is odd.
In this case, we have the following edge partition

Edge uv with (d(u),d(v)) | Number of edges
(2,2) alk—-3)+1
(2,3) 2[2]+2
(3,3) n—>5

where oo = L%J —1.
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Using the above edge partition and by usual calculations, we get
HM [C(n, P)] = 16 [a(k — 3) + 1] + 25 [2 {gJ + 2] +36(n — 5)

= (16k + 2) LgJ + 36n — 16k — 66.

1.3.2. Cycle with parallel C} chords

In this section we determine the exact value for hyper Zagreb index of a cycle
with parallel C} chord and it is defined as follows.

Definition 33. Let C), : v,v2,--- ,v, be a cycle of order n and Cj, be
another cycle of length k. Then a cycle with parallel C'x chords, denoted by
C(n,C%) is a graph obtained from C), by adding a cycle C}, of length k between
every pair of non-adjacent vertices (va,v,), (v3,Up—1), -, (Vq,vp) Where a =

Zland b= |2|+2,if niseven and a = |Z| and b= |Z| + 3, if n is odd.
2 2 2 2

Ui

Figure 4: Cycle C(16,Cy) with parallel Cy chords

(16k + 80) | 5| — 16k + 64n — 192,
if n is even,
(16k 4 80) | 2| — 16k + 64n — 240,
if n is odd.

Theorem 34. HM [C(n,Cy)] =
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iy

Figure 5: Cycle C(15,Cy) with parallel Cy chords

Proof. Case 1: n is even.
The following table gives the edge partition of C'(n,Cy) when n is even:

Edge wv with (d(u),d(v)) | Number of edges
(2,2) (k — 4 (13 =1)
(2,4) %J
(4,4) —4

By means of this table, one can easily obtain the required result that
n n
HM[C(n,C)] = (k= 4)(| 5| =1)(16) +4| T (36) + (n — 4)(64)
— (16 -+ 80) gJ — 16k + 64n — 192.

Case 2: n is odd.

Edge wv with (d(u), d(v)) Number of edges
(2,2) (k-4 (5 -1)+1
(2,4) 4]5]

Now,

HMC(n,Cp)) = [t =) (|5]) +1] (16) + 4|2 | (36) + (n — 5)(64)
= (16k + 80) LgJ — 16k + 64n — 240.
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1.3.3. Shell type graph Sh(n, k)

In this section, we compute the hyper Zagreb index of shell graph C'(n,n — 3)
and shell type graph Sh(n, k).

Definition 35. A shell graph C(n, k) represents a cycle C,, of order n
with k chords sharing a common end point called the apex.

Theorem 36. For a shell graph C(n,n — 3), HM [C(n,n — 3)] = n3 +
3n% 4 32n — 104.

Figure 6: Shell graph C(15,12) with apex vy

Proof. The proof of this result is straight forward with the help of the fol-
lowing edge partition of C'(n,n — 3).

Edge wv with (d(u),d(v)) | Number of edges
2,n—1) 2
(3,n—1) n—3

2.3) 2
(3,3) n—4

Generalizing this definition, we get the shell type graph as follows:
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Definition 37. A shell type graph Sh(n,k) is a graph formed using a
cycle C), of order n in which n — 3 paths Py of order k£ > 3 share a common end
point called apex.

Figure 7: Shell type graph Sh(12,5) with apex v;

Theorem 38. HM [Sh(n, k)] = 16kn + 12n — 48k + n? + n3 — 26.

Proof. One can easily observe the following edge partition of Sh(n, k).

Edge wv with (d(u),d(v)) | Number of edges
(2,2) (k=3)(n—3)
(2,3) n—1
(3.3) n—4
(2,n—1) n—1

Using the above edge partition we get

HM [Sh(n, k)] = (k — 3)(n — 3)(16) + 25(n — 1) + 36(n — 4)
+(n—1)(n+ 1)°
= 16kn + 12n — 48k + n% + n® — 26.
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2. Conclusions

The hyper Zagreb index of certain generalized graph structures such as gener-
alized thorn graphs and generalized theta graphs are computed in this paper.
Also, some cycle related graphs namely, cycle with parallel P, chords, cycle
with parallel C} chords, shell type graphs have been studied for the first time
in the area of Topological indices. However, computing reformulated Zagreb in-
dex of generalized thorn graphs and generalized theta graphs still remain open
and challenging problem for researchers.
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