MULTIPLICATION OPERATORS IN
MEASURABLE SECTIONS SPACES

Abstract

In this article we consider linear operators in measurable section spaces. Let $\mathcal{X}$ be a liftable measurable bundle of Banach spaces and $E$ be an order continuous Köthe function space over a finite measure space $(A,\Sigma,\mu)$. We prove that a linear continuous operator $T$ in a measurable sections space $E(\mathcal{X})$ is a multiplication operator (by a function in $L_{\infty}(\mu)$) if and only if the equality $T(g\langle
f,\phi^{\star}\rangle\phi)=g\langle T(f),\phi^{\star}\rangle\phi)$ holds for every $g\in L_{\infty}(\mu),f\in E(\mathcal{X})$, $\phi\in
L_{\infty}(\mathcal{X})$ and $\phi^{\star}\in
L_{\infty}(\mathcal{X}^{\star})$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 5
Year: 2019

DOI: 10.12732/ijam.v32i5.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] N. Abasov, A.M. Megahed, M. Pliev, Dominated operators from latticenormed spaces to sequence Banach lattices, Annals of Functional Analysis, 7, No 4 (2016), 646-655.
  2. [2] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Dordrecht (2006).
  3. [3] J.M. Calabuig, J. Rogriges, E.A. Sanchez-Perez, Multiplication operators in K¨othe-Bochner spaces, J. Math. Anal. Appl., 373 (2011), 316-321.
  4. [4] B. De Pagter, W.J. Ricker, Algebras of multiplication operators in Banach function spaces, J. Operator Theory, 42, No 2 (1999), 245-267.
  5. [5] A.E. Gutman, Banach bundles in the theory of lattice-normed spaces, In: Linear Operators Compatible with Order, Sobolev Institute Press, Novosibirsk (1995), 63-211.
  6. [6] P. Hajek, V.Montesinos Santalucia, J. Vanderwerff, V. Zizler, Biorthogonal Systems in Banach Spaces, Springer, New York (2008).
  7. [7] V. Orlov, M. Pliev, D. Rode, Domination problem for AM-compact abstract Uryson operators, Archiv der Math., 107, No 5 (2016), 543-552.
  8. [8] M. Pliev, Narrow operators on lattice-normed spaces, Open Math., 9, No 6 (2011), 1276-1287.
  9. [9] M. Pliev, M. Popov, On extension of abstract Urysohn operators, Siberian Math. J., 57, No 3 (2016), 552-557.
  10. [10] M.A. Pliev, M.R. Weber, Disjointness and order projections in the vector lattices of abstract Uryson operators, Positivity, 20, No 3 (2016), 695-707.
  11. [11] M. Pliev, K. Ramdane, Order unbounded orthogonally additive operators in vector lattices, Mediterranean J. of Math., 15, No 2 (2018), 1-19.
  12. [12] M. Pliev, X. Fang, Narrow orthgonally additive operators in lattice-normed spaces, Siberian Math. J., 58, No 1 (2017), 134-141.
  13. [13] A.G. Kusraev, Dominated Operators, Springer, Dordrecht (2000).