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Abstract: In this article we consider linear operators in measurable section
spaces. Let X be a liftable measurable bundle of Banach spaces and F be an
order continuous Kothe function space over a finite measure space (A, 3, u).
We prove that a linear continuous operator 71" in a measurable sections space
E(X) is a multiplication operator (by a function in L. (u)) if and only if the

equality T(g(f,¢*)¢) = g(T'(f),#*)¢) holds for every g € Loo(n), f € E(X),
¢ € Log(X) and ¢* € Log(X*).
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1. Introduction

Today the theory of linear and orthogonally additive operators in lattice-normed
spaces is an active area of Functional Analysis (see for instance [1, 7, 8, 9, 10,
11, 12]). We remark that the spaces of continuous and measurable sections
of Banach bundles are typical examples of lattice-normed spaces. The aim of
this article is the investigation of operators between section spaces. We obtain
necessary and sufficient conditions for a linear continuous operator T : E(X) —
E(X) to be a multiplication operator on a measurable function.
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2. Preliminaries

In this section we state some basic facts concerning Banach bundles and lattice-
normed spaces. For notations and terminology not explained in the paper the
reader can consult the book [2, 13]. All linear spaces we consider below are
real.

Consider a vector space V and an Archimedean vector lattice F. A map
| - | : V= E4 is called a vector norm, if it satisfies the following conditions:

1) Jv] >20; Jv] =00v=0; veV.
2) lut+o| < lul + |v]; w,veV.
3) | u]l =\ lul; AeR,ueV.

A vector norm is called decomposable, if

4) for all ey,eq € F4 and v € V from |v| = e; + eg it follows that there
exist v1,vy € V such that v = vy + ve and |vg| = e, (k:=1,2).

A triple (V, | - |, E) ((V, E) or V for brevity) is called a lattice-normed space
if | -]:V — E4 is a vector norm in the vector space V. If the norm | - | is
decomposable then the space V is called decomposable. A net (vy)aca (bo)-
converges to an element v € V, if there exists a decreasing net (e¢)¢cz in E4 such
that infecz(eg) = 0 and for every § € Z there is an index «(§) € A such that
| v = vage)| < e forall @ > a(§). A net (vq)aea is called (bo)-fundamental,
if the net (va — vg)(a,8)caxa (bo)-converges to zero. A lattice-normed space is
called (bo)-complete if every (bo)-fundamental net (bo)-converges to an element
of this space. Every decomposable (bo)-complete lattice-normed space is called
a Banach-Kantorovich space.

Consider some examples of lattice-normed spaces. We start with two simple
cases, namely vector lattices and normed spaces. If V= E then the module of
an element can be taken as its vector norm: |v| := |v| = vV (—v); v € E. The
decomposability of this norm follows from the Riesz Decomposition Property
holding in every vector lattice (see [2], Th. 1.13). If E' = R, then V is a normed
space.

Let (2,%, ) be a complete o-finite measure space. A Banach space E
consisting of equivalence classes modulo equality almost everywhere integrable
real-valued functions on 2 is called Kdthe function space if E following condi-
tions hold:

1. If f € Lo(p) and |f| < |g| p-a.e. for some g € E, then f € E and
1fle < lglle;
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2. for every A € ¥ with u(A) < oo the characteristic function x4 belongs
to E.

Definition 1. Let € be a nonempty set. A bundle of Banach spaces over
Q is a mapping X defined on 2 and associating a Banach space X; := X(t) :=
(X(@), I - [lxq)) with every point ¢ € Q. The value X; of bundle is called its
fiber over t. A mapping s defined on a nonempty set dom(s) C € is called a
section over dom(s) if s(t) € X} for every ¢ € dom(s). A section over (2 is called
global. Let G(€, X') standfor the set of all global sections of X endowed with
the structure of vector space by letting (au + Sv)(t) = au(t) + fu(t), (t € Q),
where o, 5 € R and u,v € G(2, X). For each section s € G(Q2, X') we define its
point-wise norm by |[[|s|[| : ¢ = [|s(t)[|x(), (t € ). A set of sections D is called
fiberwise dense in X if the set {s(t) : s € D} is dense in X(t) for every t € Q.

Definition 2. Now consider a nonzero o-finite measure space (2,3, u).
Let X be a bundle of Banach spaces over €. A set of sections Z C G(2, X) is
called a measurability structure on X if it satisfies the following conditions:

1. T is a vector space, i.e. Ao+ pu € Z(A\,u € R, u,v € I);
2. |||s]l] : 2 — R is measurable for s € Z;

3. the set Z is fiberwise dense in X. If 7 is a measurability structure in X
then we call the pair (X,Z) a measurable bundle of Banach spaces over
(©,%, ). We shall write simply X instead (X,T).

Definition 3. Let (X,Z) be a measurable bundle of Banach spaces over
Q. Denote by M (£, X) the set of all section of X defined almost everywhere on

n
2. We say that s € M(Q,X) is a step-section, if s = ) xa,c; for some n € N,
i=1
Ai,..., Ay €Y, c1,...,¢n, € L. The set all step-sections we denote by S(Q2, X).
A section u € M (2, X) is called measurable if for every D € ¥, u(D) < oo there
is a sequence (5)5%; C S(, X') such that s(t) — u(t) for almost all ¢ € D. The
set of all measurable sections of X" is denoted by Lo(€2, %, u, X) or Lo(u, X') for

simplicity. For a Kothe function space E on (2,3, i) we assign
E(X) :={f € Lo(u. X) : | f| € E}.

For measurable section f € Lo(€2, X, u, X) by supp(f) we denote the mea-
surable set {t € Q : f(t) # 0}. Let X be a measurable bundle of Banach
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spaces over §2. The measurable bundle of Banach spaces Ay over 2 is called a
measurable subbundle of X, if an every fiber Xy(¢) is a Banach subspace of the
X (t) for every t € Q and Lo(u, Xy) = Lo(p, X) N M(Q, X).

Let & be a measurable bundle of Banach spaces over (). Since the measure
 is o-finite we can consider a fixed lifting p : Loo (1) — Loo(pt)-

Definition 4. A mapping px : Loo(tt, X) = Loo(p, X) is called a lifting
of Loo(p, X) associated with p if, for all u,v € Loo(p, X) and e € Loo(p), the
following hold:

(1) px(u) € uw and dompy (u) = €
2) |px(w)]| = p(lul);

(3) px(u+v) = px(u)+ px(v);
@) [px(w)] = px(lul)®;

(5) |px(eu)| = ple)p(lul);

(6)

6) {px(u): u€ L(2,X)} is fiberwise dense in X.
We say that X is a liftable bundle of Banach spaces provided that there
exists a lifting of Lo (1) and a lifting of Lo (p, X') associated with it. We refer
a reader to [5, 13] for the detailed discussion of liftable bundles of Banach spaces
and their connections with the theory of lattice-normed spaces.

Let X be a Banach space. Recall that a Markushevich basis (shortly M-
basis) of X is a family (x;, 2} )icr, where z; € X and 2} € X*, such that:

1) zi(27) = di; (the Kronecker symbol) for every i,j € I;
2) X =span{z; : i € I};

3) {z} : i € I} separates the points of X (i.e. for each z € X\{0} there is
i € I such that z}(z) # 0.

It is well known that every separable Banach space has an M-basis, see
[6]. More generally, every weakly compactly generated Banach space has an
M-basis, see ([6], Cor. 5.2). For complete information on this topic, we refer
the reader to [6].

Let E be a Kothe function space over finite measure space. It is well known
that linear continuous operator in F is a multiplication operator if and only
if it commutes with all multiplication operators in E ([11], Prop. 2.2). More
precisely:
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Corollary 5. A linear continuous operator T : ¥ — FE is a multiplication
operator if and only if T(gf) = gT(f) for all g € Loo(p) and f € E.

3. Result

For the rest of the paper, (Q,%, 1) is assumed to be a finite measure space, E
is a order continuous Kéthe function space over (§2, %, ). At first we introduce
the kind of measurable bundles of Banach spaces, which we need. Liftable mea-
surable bundle of Banach spaces X over (2, %, ) is said to have a Generalized
M-basis or GM-basis for short if there is a family (¢;, ¢} )ic; measurable section,
where ¢; € Loo(pt, X') and ¢f € Loo(pt, X*), such that

(1) (¥iwj) = dijxa;

(ii) for every order ideal E of Lg(u) there exists order dense subspace Fj
of K such that ||f(-) — 0k(-)lx) — 0 ae. as n — oo for every step-
n(k)
section f € E(X); where 0 = > hF()pk (), pF are elements of GM-
i=1
basis, h¥ € Ey for every k € N,1 < i < n(k);

(iii) for every measurable section f € Lo(X), u(supp(f)) > 0 there exist o}
and measurable set A C supp(f), #(A) > 0so that g(w) := (¢} , f)(w) >0
for every w € A.

Corollary 6. Suppose liftable measurable bundles of Banach spaces X
has an GM-basis (¢;, ¢} )icr. Let T : E(X) — E(X) be operator satisfying

T(g(f,05)i) = g(T(f), €f)i) (1)

for every g € Loo(pt), f € E(X) and i,j € I. Then there is gy € Loo(it) such
that T(f) = gof for every measurable section f € E(X).

Proof. We first notice that
(T(hgi),¢5) =0; i#j, he E. (2)
Indeed, (3.1) applied to f := hp; € E(X) and g := xq € Loo(p) yields

(T(hei), ¢5)pi = T((hepi, 5 )pi) = T(0) = 0,
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and because supp(y;) = Q we have (T'(he;), ¢})) = 0. For each i € I we define
SI':FE— E by
S7(h) = (T(hgi), 7).

The mapping SiT is a linear continuous operator for every 7 € I, because
187 hll sy = KT (i), )12 < 107 | Low () I T (hp) || 202

<7 oo ) I T il gy < Killhlle
for all h € B, where K; := [0} |1 x)ITI[l07 | Lo (x+)- We observe that each
ST satisfies

ST (gh) = gS] (h), for every g € Log(11), h € E. (3)
Indeed, (3.1) with ¢ = j applied to f := hp; € E(X) yields

T(ghwi) = T(g{hei, o) i) = g{T (hei), 05 i,
hence
ST (gh) = (T(ghei),0}) = ((g({T(heos), 05) ), F)
= g(T(hi), ¢F) = g5} (h).

For each i € I equality (3.3) allows us to apply Corollary 5 to find g; € Loo(p)
such that

(T(hgi, ¢})) = S] (h) = gih, for every h € E. (4)

2

We claim that g; = g; for every 7,57 € I. Indeed, fix i # j and consider the
measurable section f = ¢; + ¢; € E(X). By (3.3), (3.2) and (3.1) (with
g:=Xq € Loo(p) and h := xq € E) we have

gipi = (T(i), oi)pi = (T(i), 07 )i + (T(05), 7 ) pi
= (T(f), )N =TS 0D)es) = T(p;),
and similarly, we also have
gipi = (T(ej), 5)pi = (T(w)), 5)pi + (T(0i), €5 )pi

=(T(f).¥j)pi = T({f 5)pi) =T (i)
Hence g;; = g;jpi and because supp(y;) = €2, we have g; = g;. Therefore,
there is go € Loo(ut) such that

(T(hei), ¢;)) = goh, for every he E, i€ I. (5)
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Let f be a step-section and f € E(X). To this end, fix ¢ > 0. We will prove
that T'(f) = gof. Using conditions (i) we have

1£() Zh’“ 0F (Mlae) =0, p—ae., k— oo

Set
n(k)

Jfo —th%a and fi —gofo—zgohz% E(X).

For each i € I equalities (3.2) and (3.5) yield

(T(fo),05) = D (T(hff),5) =) Sijgoh = (f1,5), for every j € I,
=1 i=1

and using (i7i) we have T'(fo) = f1 = gofo. Therefore,
1T(f) = gofllexy =1T(f) = Tfo+g0fo — gofllecx)

<|T(f) = T(fo)llewxy + llgofo — g0 f | o)
<|TIIf = follecxy + lgollell fo — fllE(x)
=TI = foOllxoyle) + lgoll e C) = follxele)

= ITNANSC) = D BEQ e Ollxe le)
i=1
Hlgoll (£ C) = Y BEQEE Oy llw)-
i=1
Using fact that E' is a order continuous we can find k£ € N such that

1) th P Nlxelle <e

and finally we have
IT(f) = gofllpw) < Ce

where C' := (||| + llgollg)- It follows at once that T(f) = gof for every
f € S(X). In addition S(X) is dense in E(X) with respect the norm | - || ()
and so the equality T'(f) = gof holds for every f € E(X), because both T" and
My, : E(X) — E(X) are continuous operators. O
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Now we need the following corollary.

Corollary 7. Let X be liftable measurable bundles of Banach spaces,
T:E(X)— E(X) a linear continuous operator satisfying

T(g,{f,9")0) = g(T(f), 9")9) (6)

for every g € Loo(p), f € E(X), ¢ € Loo(pt, X) and ¢* € Loo(p, X*). Let Y be
an measurable subbundle of X. Then T maps E()) into itself.

Proof. Fix f € E(Y) of the form f = ht for some h € F and ¢ € Lo (p,)),
supp(¢)) = . Then there exists * € Loo(p, X*) such that (¢(-),v*(-)) = xq-
By applying (3.6) with g := xq and f = ¢ we get

T(f) =T, " )0) = T((f, ")) = (T'(f),")¥) € E(Y).
O

Let (2,%, 1) be a finite measure space and X" a liftable measurable bundle
of Banach spaces over (2. X is said to have R-property if for every measurable
sections f,g € Lo(u, X') there exists a measurable subbundle )y, of X such
that f(t),g(t) € Yy 4(t) for almost every all ¢ €  and Yy 4 has a GM-basis.

Now we can prove the main result.

Theorem 8. Let X be liftable measurable bundle of Banach spaces and
X has a R-property. Let T : E(X) — E(X) be a linear continuous operator.
The following statements are equivalent:

1) T is a multiplication operator, that is, there is gy € Loo(p) such that
T(f) = gof for all f € B(X);

2) The equality T(g{f,¢*)¢) = g((T(f ),go*) ) holds for every g € Loo(p),
f € E(X), ¢ € Loo(p, X) and ¢* € Loo(pt, &™)

Proof. 1) = 2) is straightforward. 2) = 1). Fix ¢ € Loo(p, X), supp(¢)) =
Q and * € Loo(p, X*) with (¢p,9*) = xq. As in the proof of Corollary 6, we
can define an operator

ST E— BE; ST(h) := (T(h), ")
which satisfies

ST (gh) = gST(h); for every g € Loo(p), h € E.
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By Corollary 5 there the exists gy € Loo(1t) such that
(T(hap), ") = ST (h) = goh. (7)

We claim that T'(f) = gof for all f € E(X). Indeed, take any f € E(X). Since
X has the R-property, there is a measurable subbundle Yy, of X such that
f(t),¢(t) € Viyp(t) for almost every all t € Q and Yy, has a GM-basis. By
Corollary 7 we have T(E(Yf,y)) C E(Vy). Clearly,

T ;) (9{f1,07)0) = 9T ew;.,) (f1): " )e

for every g € Loo(p), f1 € E(Vfw), ¢* € Loo(pt, X*), ¢ € Loo(pt, Yyp). Corol-
lary 6 applied to 7| E(Y;.,) €nsures the existence of g € Lo () so that

T(f1) =gfi: fr € E(Vrp)-

Since both 9 and f belong to E(Yy ), we have T'(¢)) = gy and T'(f) = gf. On
the other hand, (3.7) applied to h := xq € E yields

go = (T(¥),¢*) = (g, ¥") = g,
and so T'(f) = gof, as claimed. O

Notice that the particular case of Theorem 8 for a constant Banach bundle
X was proved in ([3], Th. 1.4).
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