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Abstract: In this article we consider linear operators in measurable section
spaces. Let X be a liftable measurable bundle of Banach spaces and E be an
order continuous Köthe function space over a finite measure space (A,Σ, µ).
We prove that a linear continuous operator T in a measurable sections space
E(X ) is a multiplication operator (by a function in L∞(µ)) if and only if the
equality T (g〈f, φ⋆〉φ) = g〈T (f), φ⋆〉φ) holds for every g ∈ L∞(µ), f ∈ E(X ),
φ ∈ L∞(X ) and φ⋆ ∈ L∞(X ⋆).
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1. Introduction

Today the theory of linear and orthogonally additive operators in lattice-normed
spaces is an active area of Functional Analysis (see for instance [1, 7, 8, 9, 10,
11, 12]). We remark that the spaces of continuous and measurable sections
of Banach bundles are typical examples of lattice-normed spaces. The aim of
this article is the investigation of operators between section spaces. We obtain
necessary and sufficient conditions for a linear continuous operator T : E(X ) →
E(X ) to be a multiplication operator on a measurable function.
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2. Preliminaries

In this section we state some basic facts concerning Banach bundles and lattice-
normed spaces. For notations and terminology not explained in the paper the
reader can consult the book [2, 13]. All linear spaces we consider below are
real.

Consider a vector space V and an Archimedean vector lattice E. A map




 ·




 : V → E+ is called a vector norm, if it satisfies the following conditions:

1)




v




≥ 0;




v




= 0 ⇔ v = 0; v ∈ V .

2)




u+ v




≤




u




+




v




; u, v ∈ V .

3)




λu




= |λ|




u




; λ ∈ R, u ∈ V .

A vector norm is called decomposable, if

4) for all e1, e2 ∈ E+ and v ∈ V from




v




 = e1 + e2 it follows that there
exist v1, v2 ∈ V such that v = v1 + v2 and





vk




= ek, (k := 1, 2).

A triple (V,




 ·




, E) ((V,E) or V for brevity) is called a lattice-normed space

if




 ·




 : V → E+ is a vector norm in the vector space V . If the norm




 ·




 is
decomposable then the space V is called decomposable. A net (vα)α∈∆ (bo)-
converges to an element v ∈ V , if there exists a decreasing net (eξ)ξ∈Ξ in E+ such
that infξ∈Ξ(eξ) = 0 and for every ξ ∈ Ξ there is an index α(ξ) ∈ ∆ such that








v − vα(ξ)








≤ eξ for all α ≥ α(ξ). A net (vα)α∈∆ is called (bo)-fundamental,
if the net (vα − vβ)(α,β)∈∆×∆ (bo)-converges to zero. A lattice-normed space is
called (bo)-complete if every (bo)-fundamental net (bo)-converges to an element
of this space. Every decomposable (bo)-complete lattice-normed space is called
a Banach-Kantorovich space.

Consider some examples of lattice-normed spaces. We start with two simple
cases, namely vector lattices and normed spaces. If V = E then the module of
an element can be taken as its vector norm:





v




 := |v| = v∨ (−v); v ∈ E. The
decomposability of this norm follows from the Riesz Decomposition Property
holding in every vector lattice (see [2], Th. 1.13). If E = R, then V is a normed
space.

Let (Ω,Σ, µ) be a complete σ-finite measure space. A Banach space E
consisting of equivalence classes modulo equality almost everywhere integrable
real-valued functions on Ω is called Köthe function space if E following condi-
tions hold:

1. If f ∈ L0(µ) and |f | ≤ |g|µ-a.e. for some g ∈ E, then f ∈ E and
‖f‖E ≤ ‖g‖E ;
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2. for every A ∈ Σ with µ(A) < ∞ the characteristic function χA belongs
to E.

Definition 1. Let Ω be a nonempty set. A bundle of Banach spaces over

Ω is a mapping X defined on Ω and associating a Banach space Xt := X (t) :=
(X (t), ‖ · ‖X (t)) with every point t ∈ Ω. The value Xt of bundle is called its
fiber over t. A mapping s defined on a nonempty set dom(s) ⊂ Ω is called a
section over dom(s) if s(t) ∈ Xt for every t ∈ dom(s). A section over Ω is called
global. Let G(Ω,X ) standfor the set of all global sections of X endowed with
the structure of vector space by letting (αu + βv)(t) = αu(t) + βv(t), (t ∈ Ω),
where α, β ∈ R and u, v ∈ G(Ω,X ). For each section s ∈ G(Ω,X ) we define its
point-wise norm by |‖s|‖ : t 7→ ‖s(t)‖X (t), (t ∈ Ω). A set of sections D is called
fiberwise dense in X if the set {s(t) : s ∈ D} is dense in X (t) for every t ∈ Ω.

Definition 2. Now consider a nonzero σ-finite measure space (Ω,Σ, µ).
Let X be a bundle of Banach spaces over Ω. A set of sections I ⊂ G(Ω,X ) is
called a measurability structure on X if it satisfies the following conditions:

1. I is a vector space, i.e. λv + µu ∈ I (λ, µ ∈ R, u, v ∈ I);

2. |‖s|‖ : Ω → R is measurable for s ∈ I;

3. the set I is fiberwise dense in X . If I is a measurability structure in X
then we call the pair (X ,I) a measurable bundle of Banach spaces over
(Ω,Σ, µ). We shall write simply X instead (X ,I).

Definition 3. Let (X ,I) be a measurable bundle of Banach spaces over
Ω. Denote byM(Ω,X ) the set of all section of X defined almost everywhere on

Ω. We say that s ∈M(Ω,X ) is a step-section, if s =
n
∑

i=1
χAici for some n ∈ N ,

A1, . . . , An ∈ Σ, c1, . . . , cn ∈ I. The set all step-sections we denote by S(Ω,X ).
A section u ∈M(Ω,X ) is called measurable if for every D ∈ Σ, µ(D) <∞ there
is a sequence (s)∞n=1 ⊂ S(Ω,X ) such that s(t) → u(t) for almost all t ∈ D. The
set of all measurable sections of X is denoted by L0(Ω,Σ, µ,X ) or L0(µ,X ) for
simplicity. For a Köthe function space E on (Ω,Σ, µ) we assign

E(X ) := {f ∈ L0(µ,X ) :




f




∈ E}.

For measurable section f ∈ L0(Ω,Σ, µ,X ) by supp(f) we denote the mea-
surable set {t ∈ Ω : f(t) 6= 0}. Let X be a measurable bundle of Banach
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spaces over Ω. The measurable bundle of Banach spaces X0 over Ω is called a
measurable subbundle of X , if an every fiber X0(t) is a Banach subspace of the
X (t) for every t ∈ Ω and L0(µ,X0) = L0(µ,X ) ∩M(Ω,X ).

Let X be a measurable bundle of Banach spaces over Ω. Since the measure
µ is σ-finite we can consider a fixed lifting ρ : L∞(µ) → L∞(µ).

Definition 4. A mapping ρX : L∞(µ,X ) → L∞(µ,X ) is called a lifting
of L∞(µ,X ) associated with ρ if, for all u, v ∈ L∞(µ,X ) and e ∈ L∞(µ), the
following hold:

(1) ρX (u) ∈ u and domρX (u) = Ω;

(2)








ρX (u)








= ρ(




u




);

(3) ρX (u+ v) = ρX (u) + ρX (v);

(4)








ρX (u)








= ρX (




u




)Ω;

(5)








ρX (eu)








= ρ(e)ρ(




u




);

(6) {ρX (u) : u ∈ L∞(Ω,X )} is fiberwise dense in X .

We say that X is a liftable bundle of Banach spaces provided that there
exists a lifting of L∞(µ) and a lifting of L∞(µ,X ) associated with it. We refer
a reader to [5, 13] for the detailed discussion of liftable bundles of Banach spaces
and their connections with the theory of lattice-normed spaces.

Let X be a Banach space. Recall that a Markushevich basis (shortly M-
basis) of X is a family (xi, x

⋆
i )i∈I , where xi ∈ X and x⋆i ∈ X⋆, such that:

1) xi(x
⋆
j ) = δij (the Kronecker symbol) for every i, j ∈ I;

2) X = span{xi : i ∈ I};

3) {x⋆i : i ∈ I} separates the points of X (i.e. for each x ∈ X\{0} there is
i ∈ I such that x⋆i (x) 6= 0.

It is well known that every separable Banach space has an M -basis, see
[6]. More generally, every weakly compactly generated Banach space has an
M-basis, see ([6], Cor. 5.2). For complete information on this topic, we refer
the reader to [6].

Let E be a Köthe function space over finite measure space. It is well known
that linear continuous operator in E is a multiplication operator if and only
if it commutes with all multiplication operators in E ([11], Prop. 2.2). More
precisely:
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Corollary 5. A linear continuous operator T : E → E is a multiplication
operator if and only if T (gf) = gT (f) for all g ∈ L∞(µ) and f ∈ E.

3. Result

For the rest of the paper, (Ω,Σ, µ) is assumed to be a finite measure space, E
is a order continuous Köthe function space over (Ω,Σ, µ). At first we introduce
the kind of measurable bundles of Banach spaces, which we need. Liftable mea-
surable bundle of Banach spaces X over (Ω,Σ, µ) is said to have a Generalized

M-basis or GM-basis for short if there is a family (ϕi, ϕ
⋆
i )i∈I measurable section,

where ϕi ∈ L∞(µ,X ) and ϕ⋆i ∈ L∞(µ,X ⋆), such that

(i) 〈ϕ⋆iϕj〉 = δijχΩ;

(ii) for every order ideal E of L0(µ) there exists order dense subspace E0

of E such that ‖f(·) − θk(·)‖X (·) → 0 a.e. as n → ∞ for every step-

section f ∈ E(X ); where θk =
n(k)
∑

i=1
hki (·)ϕ

k
i (·),ϕ

k
i are elements of GM-

basis, hki ∈ E0 for every k ∈ N , 1 ≤ i ≤ n(k);

(iii) for every measurable section f ∈ L0(X ), µ(supp(f)) > 0 there exist ϕ⋆i0
and measurable set A ⊂ supp(f), µ(A) > 0 so that g(ω) := 〈ϕ⋆i0 , f〉(ω) > 0
for every ω ∈ A.

Corollary 6. Suppose liftable measurable bundles of Banach spaces X
has an GM-basis (ϕi, ϕ

⋆
i )i∈I . Let T : E(X ) → E(X ) be operator satisfying

T (g〈f, ϕ⋆j 〉ϕi) = g(〈T (f), ϕ⋆j 〉ϕi) (1)

for every g ∈ L∞(µ), f ∈ E(X ) and i, j ∈ I. Then there is g0 ∈ L∞(µ) such
that T (f) = g0f for every measurable section f ∈ E(X ).

Proof. We first notice that

〈T (hϕi), ϕ
⋆
j 〉 = 0; i 6= j, h ∈ E. (2)

Indeed, (3.1) applied to f := hϕi ∈ E(X ) and g := χΩ ∈ L∞(µ) yields

〈T (hϕi), ϕ
⋆
j 〉ϕi = T (〈hϕi, ϕ

⋆
j 〉ϕi) = T (0) = 0,
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and because supp(ϕi) = Ω we have 〈T (hϕi), ϕ
⋆
j 〉) = 0. For each i ∈ I we define

STi : E → E by
STi (h) := 〈T (hϕi), ϕ

⋆
i 〉.

The mapping STi is a linear continuous operator for every i ∈ I, because

‖STi h‖E(X ) = ‖〈T (hϕi), ϕ
⋆
i 〉‖E ≤ ‖ϕ⋆i ‖L∞(X )‖T (hϕi)‖E(X )

≤ ‖ϕ⋆i ‖L∞(X )‖T‖‖hϕi‖E(X ) ≤ Ki‖h‖E

for all h ∈ E, where Ki := ‖ϕ⋆i ‖L∞(X )‖T‖‖ϕ
⋆
i ‖L∞(X ⋆). We observe that each

STi satisfies

STi (gh) = gSTi (h), for every g ∈ L∞(µ), h ∈ E. (3)

Indeed, (3.1) with i = j applied to f := hϕi ∈ E(X ) yields

T (ghϕi) = T (g〈hϕi, ϕ
⋆
i 〉ϕi) = g〈T (hϕi), ϕ

⋆
i 〉ϕi,

hence
STi (gh) = 〈T (ghϕi), ϕ

⋆
i 〉 = 〈(g〈T (hϕi), ϕ

⋆
i 〉ϕi), ϕ

⋆
i 〉

= g〈T (hϕi), ϕ
⋆
i 〉 = gSTi (h).

For each i ∈ I equality (3.3) allows us to apply Corollary 5 to find gi ∈ L∞(µ)
such that

〈T (hϕi, ϕ
⋆
i )〉 = STi (h) = gih, for every h ∈ E. (4)

We claim that gi = gj for every i, j ∈ I. Indeed, fix i 6= j and consider the
measurable section f := ϕi + ϕj ∈ E(X ). By (3.3), (3.2) and (3.1) (with
g := χΩ ∈ L∞(µ) and h := χΩ ∈ E) we have

giϕi = 〈T (ϕi), ϕ
⋆
i 〉ϕi = 〈T (ϕi), ϕ

⋆
i 〉ϕi + 〈T (ϕj), ϕ

⋆
i 〉ϕi

= 〈T (f), ϕ⋆i )〉ϕj = T (〈f, ϕ⋆i 〉ϕj) = T (ϕj),

and similarly, we also have

gjϕi = 〈T (ϕj), ϕ
⋆
j 〉ϕi = 〈T (ϕj), ϕ

⋆
j 〉ϕi + 〈T (ϕi), ϕ

⋆
j 〉ϕi

= 〈T (f), ϕ⋆j )〉ϕi = T (〈f, ϕ⋆j 〉ϕi) = T (ϕi).

Hence giϕi = gjϕi and because supp(ϕi) = Ω, we have gi = gj . Therefore,
there is g0 ∈ L∞(µ) such that

〈T (hϕi), ϕ
⋆
i )〉 = g0h, for every h ∈ E, i ∈ I. (5)
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Let f be a step-section and f ∈ E(X ). To this end, fix ε > 0. We will prove
that T (f) = g0f . Using conditions (ii) we have

‖f(·)−

n(k)
∑

i=1

hki (·)ϕ
k
i (·)‖X (·) → 0, µ− a.e., k → ∞.

Set

f0 :=

n(k)
∑

i=1

hki ϕ
k
i , and f1 := g0f0 =

n(k)
∑

i=1

g0h
k
i ϕ

k
i ∈ E(X ).

For each i ∈ I equalities (3.2) and (3.5) yield

〈T (f0), ϕ
⋆
j 〉 =

n(k)
∑

i=1

〈T (hki ϕ
k
i ), ϕ

⋆
j 〉 =

n(k)
∑

i=1

δi,jg0h = 〈f1, ϕ
⋆
j 〉, for every j ∈ I,

and using (iii) we have T (f0) = f1 = g0f0. Therefore,

‖T (f)− g0f‖E(X ) = ‖T (f)− Tf0 + g0f0 − g0f‖E(X )

≤ ‖T (f)− T (f0)‖E(X ) + ‖g0f0 − g0f‖E(X )

≤ ‖T‖‖f − f0‖E(X ) + ‖g0‖E‖f0 − f‖E(X )

= ‖T‖(‖‖f(·) − f0(·)‖X (·)‖E) + ‖g0‖E(‖‖f(·)− f0(·)‖X (·)‖E)

= ‖T‖(‖‖f(·) −

n(k)
∑

i=1

hki (·)ϕ
k
i (·)‖X (·)‖E)

+‖g0‖E(‖‖f(·) −

n(k)
∑

i=1

hki (·)ϕ
k
i (·))‖X (·)‖E).

Using fact that E is a order continuous we can find k ∈ N such that

‖‖f(·)−

n(k)
∑

i=1

hki (·)ϕ
k
i (·))‖X (·)‖E < ε,

and finally we have
‖T (f)− g0f‖E(X ) ≤ Cε

where C := (‖T‖ + ‖g0‖E). It follows at once that T (f) = g0f for every
f ∈ S(X ). In addition S(X ) is dense in E(X ) with respect the norm ‖ · ‖E(X )

and so the equality T (f) = g0f holds for every f ∈ E(X ), because both T and
Mg0 : E(X ) → E(X ) are continuous operators.
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Now we need the following corollary.

Corollary 7. Let X be liftable measurable bundles of Banach spaces,
T : E(X ) → E(X ) a linear continuous operator satisfying

T (g, 〈f, φ⋆〉φ) = g(〈T (f), φ⋆〉φ) (6)

for every g ∈ L∞(µ), f ∈ E(X ), φ ∈ L∞(µ,X ) and φ⋆ ∈ L∞(µ,X ⋆). Let Y be
an measurable subbundle of X . Then T maps E(Y) into itself.

Proof. Fix f ∈ E(Y) of the form f = hψ for some h ∈ E and ψ ∈ L∞(µ,Y),
supp(ψ) = Ω. Then there exists ψ⋆ ∈ L∞(µ,X ⋆) such that 〈ψ(·), ψ⋆(·)〉 = χΩ.
By applying (3.6) with g := χΩ and f = ψ we get

T (f) = T (〈hψ,ψ⋆〉ψ) = T (〈f, ψ⋆〉ψ) = (〈T (f), ψ⋆〉ψ) ∈ E(Y).

Let (Ω,Σ, µ) be a finite measure space and X a liftable measurable bundle
of Banach spaces over Ω. X is said to have R-property if for every measurable
sections f, g ∈ L0(µ,X ) there exists a measurable subbundle Yf,g of X such
that f(t), g(t) ∈ Yf,g(t) for almost every all t ∈ Ω and Yf,g has a GM -basis.

Now we can prove the main result.

Theorem 8. Let X be liftable measurable bundle of Banach spaces and
X has a R-property. Let T : E(X ) → E(X ) be a linear continuous operator.
The following statements are equivalent:

1) T is a multiplication operator, that is, there is g0 ∈ L∞(µ) such that
T (f) = g0f for all f ∈ E(X );

2) The equality T (g〈f, ϕ⋆〉ϕ) = g(〈T (f), ϕ⋆〉ϕ) holds for every g ∈ L∞(µ),
f ∈ E(X ), ϕ ∈ L∞(µ,X ) and ϕ⋆ ∈ L∞(µ,X ⋆).

Proof. 1) ⇒ 2) is straightforward. 2) ⇒ 1). Fix ψ ∈ L∞(µ,X ), supp(ψ) =
Ω and ψ⋆ ∈ L∞(µ,X ⋆) with 〈ψ,ψ⋆〉 = χΩ. As in the proof of Corollary 6, we
can define an operator

ST : E → E; ST (h) := 〈T (hψ), ψ⋆〉

which satisfies

ST (gh) = gST (h); for every g ∈ L∞(µ), h ∈ E.



MULTIPLICATION OPERATORS IN... 855

By Corollary 5 there the exists g0 ∈ L∞(µ) such that

〈T (hψ), ψ⋆〉 = ST (h) = g0h. (7)

We claim that T (f) = g0f for all f ∈ E(X ). Indeed, take any f ∈ E(X ). Since
X has the R-property, there is a measurable subbundle Yf,ψ of X such that
f(t), ψ(t) ∈ Yf,ψ(t) for almost every all t ∈ Ω and Yf,ψ has a GM -basis. By
Corollary 7 we have T (E(Yf,ψ)) ⊂ E(Yf,ψ). Clearly,

T |E(Yf,ψ)(g〈f1, ϕ
⋆〉ϕ) = g〈T |E(Yf,ψ)(f1), ϕ

⋆〉ϕ

for every g ∈ L∞(µ), f1 ∈ E(Yf,ψ), ϕ
⋆ ∈ L∞(µ,X ⋆), ϕ ∈ L∞(µ,Yf,ψ). Corol-

lary 6 applied to T |E(Yf,ψ) ensures the existence of g ∈ L∞(µ) so that

T (f1) = gf1; f1 ∈ E(Yf,ψ).

Since both ψ and f belong to E(Yf,ψ), we have T (ψ) = gψ and T (f) = gf . On
the other hand, (3.7) applied to h := χΩ ∈ E yields

g0 = 〈T (ψ), ψ⋆〉 = 〈gψ, ψ⋆〉 = g,

and so T (f) = g0f , as claimed.

Notice that the particular case of Theorem 8 for a constant Banach bundle
X was proved in ([3], Th. 1.4).
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