International Journal of Applied Mathematics

Volume 32 No. 5 2019, 847-856

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v32i5.11

MULTIPLICATION OPERATORS IN MEASURABLE SECTIONS SPACES

Marat Pliev

Southern Mathematical Institute of RAS Vladikavkaz, 362027, RUSSIA

Abstract: In this article we consider linear operators in measurable section spaces. Let \mathcal{X} be a liftable measurable bundle of Banach spaces and E be an order continuous Köthe function space over a finite measure space (A, Σ, μ) . We prove that a linear continuous operator T in a measurable sections space $E(\mathcal{X})$ is a multiplication operator (by a function in $L_{\infty}(\mu)$) if and only if the equality $T(g\langle f, \phi^* \rangle \phi) = g\langle T(f), \phi^* \rangle \phi$) holds for every $g \in L_{\infty}(\mu), f \in E(\mathcal{X}), \phi \in L_{\infty}(\mathcal{X})$ and $\phi^* \in L_{\infty}(\mathcal{X}^*)$.

AMS Subject Classification: 46B99, 47B99

Key Words: Köthe function space; measurable sections space' liftable measurable bundle of Banach spaces; multiplication operator

1. Introduction

Today the theory of linear and orthogonally additive operators in lattice-normed spaces is an active area of Functional Analysis (see for instance [1, 7, 8, 9, 10, 11, 12]). We remark that the spaces of continuous and measurable sections of Banach bundles are typical examples of lattice-normed spaces. The aim of this article is the investigation of operators between section spaces. We obtain necessary and sufficient conditions for a linear continuous operator $T: E(\mathcal{X}) \to E(\mathcal{X})$ to be a multiplication operator on a measurable function.

Received: October 19, 2019 © 2019 Academic Publications

2. Preliminaries

In this section we state some basic facts concerning Banach bundles and latticenormed spaces. For notations and terminology not explained in the paper the reader can consult the book [2, 13]. All linear spaces we consider below are real.

Consider a vector space V and an Archimedean vector lattice E. A map $|\cdot|: V \to E_+$ is called a *vector norm*, if it satisfies the following conditions:

- 1) $|v| \ge 0$; $|v| = 0 \Leftrightarrow v = 0$; $v \in V$.
- 2) $|u+v| \le |u| + |v|$; $u, v \in V$.
- 3) $|\lambda u| = |\lambda| |u|$; $\lambda \in R, u \in V$.

A vector norm is called *decomposable*, if

4) for all $e_1, e_2 \in E_+$ and $v \in V$ from $|v| = e_1 + e_2$ it follows that there exist $v_1, v_2 \in V$ such that $v = v_1 + v_2$ and $|v_k| = e_k$, (k := 1, 2).

A triple $(V, |\cdot|, E)$ ((V, E) or V for brevity) is called a lattice-normed space if $|\cdot|: V \to E_+$ is a vector norm in the vector space V. If the norm $|\cdot|$ is decomposable then the space V is called decomposable. A net $(v_{\alpha})_{\alpha \in \Delta}$ (bo)-converges to an element $v \in V$, if there exists a decreasing net $(e_{\xi})_{\xi \in \Xi}$ in E_+ such that $\inf_{\xi \in \Xi}(e_{\xi}) = 0$ and for every $\xi \in \Xi$ there is an index $\alpha(\xi) \in \Delta$ such that $|v - v_{\alpha(\xi)}| \le e_{\xi}$ for all $\alpha \ge \alpha(\xi)$. A net $(v_{\alpha})_{\alpha \in \Delta}$ is called (bo)-fundamental, if the net $(v_{\alpha} - v_{\beta})_{(\alpha,\beta) \in \Delta \times \Delta}$ (bo)-converges to zero. A lattice-normed space is called (bo)-complete if every (bo)-fundamental net (bo)-converges to an element of this space. Every decomposable (bo)-complete lattice-normed space is called a Banach-Kantorovich space.

Consider some examples of lattice-normed spaces. We start with two simple cases, namely vector lattices and normed spaces. If V=E then the module of an element can be taken as its vector norm: $\|v\| := |v| = v \vee (-v)$; $v \in E$. The decomposability of this norm follows from the Riesz Decomposition Property holding in every vector lattice (see [2], Th. 1.13). If E=R, then V is a normed space.

Let (Ω, Σ, μ) be a complete σ -finite measure space. A Banach space E consisting of equivalence classes modulo equality almost everywhere integrable real-valued functions on Ω is called $K\"{o}the$ function space if E following conditions hold:

1. If $f \in L_0(\mu)$ and $|f| \leq |g| \mu$ -a.e. for some $g \in E$, then $f \in E$ and $||f||_E \leq ||g||_E$;

2. for every $A \in \Sigma$ with $\mu(A) < \infty$ the characteristic function χ_A belongs to E.

Definition 1. Let Ω be a nonempty set. A bundle of Banach spaces over Ω is a mapping \mathcal{X} defined on Ω and associating a Banach space $\mathcal{X}_t := \mathcal{X}(t) := (\mathcal{X}(t), \|\cdot\|_{\mathcal{X}(t)})$ with every point $t \in \Omega$. The value \mathcal{X}_t of bundle is called its fiber over t. A mapping s defined on a nonempty set $\mathrm{dom}(s) \subset \Omega$ is called a section over $\mathrm{dom}(s)$ if $s(t) \in \mathcal{X}_t$ for every $t \in \mathrm{dom}(s)$. A section over Ω is called global. Let $G(\Omega, \mathcal{X})$ standfor the set of all global sections of \mathcal{X} endowed with the structure of vector space by letting $(\alpha u + \beta v)(t) = \alpha u(t) + \beta v(t)$, $(t \in \Omega)$, where $\alpha, \beta \in R$ and $u, v \in G(\Omega, \mathcal{X})$. For each section $s \in G(\Omega, \mathcal{X})$ we define its point-wise norm by $||s|||: t \mapsto ||s(t)||_{\mathcal{X}(t)}, (t \in \Omega)$. A set of sections \mathcal{D} is called fiberwise dense in \mathcal{X} if the set $\{s(t): s \in \mathcal{D}\}$ is dense in $\mathcal{X}(t)$ for every $t \in \Omega$.

Definition 2. Now consider a nonzero σ -finite measure space (Ω, Σ, μ) . Let \mathcal{X} be a bundle of Banach spaces over Ω . A set of sections $\mathcal{I} \subset G(\Omega, \mathcal{X})$ is called a *measurability structure* on \mathcal{X} if it satisfies the following conditions:

- 1. \mathcal{I} is a vector space, i.e. $\lambda v + \mu u \in \mathcal{I} (\lambda, \mu \in R, u, v \in \mathcal{I});$
- 2. $|||s|||: \Omega \to R$ is measurable for $s \in \mathcal{I}$;
- 3. the set \mathcal{I} is fiberwise dense in \mathcal{X} . If \mathcal{I} is a measurability structure in \mathcal{X} then we call the pair $(\mathcal{X}, \mathcal{I})$ a measurable bundle of Banach spaces over (Ω, Σ, μ) . We shall write simply \mathcal{X} instead $(\mathcal{X}, \mathcal{I})$.

Definition 3. Let $(\mathcal{X}, \mathcal{I})$ be a measurable bundle of Banach spaces over Ω . Denote by $M(\Omega, \mathcal{X})$ the set of all section of \mathcal{X} defined almost everywhere on Ω . We say that $s \in M(\Omega, \mathcal{X})$ is a step-section, if $s = \sum_{i=1}^{n} \chi_{A_i} c_i$ for some $n \in N$, $A_1, \ldots, A_n \in \Sigma, c_1, \ldots, c_n \in \mathcal{I}$. The set all step-sections we denote by $S(\Omega, \mathcal{X})$. A section $u \in M(\Omega, \mathcal{X})$ is called measurable if for every $D \in \Sigma, \mu(D) < \infty$ there is a sequence $(s)_{n=1}^{\infty} \subset S(\Omega, \mathcal{X})$ such that $s(t) \to u(t)$ for almost all $t \in D$. The set of all measurable sections of \mathcal{X} is denoted by $L_0(\Omega, \Sigma, \mu, \mathcal{X})$ or $L_0(\mu, \mathcal{X})$ for simplicity. For a Köthe function space E on (Ω, Σ, μ) we assign

$$E(\mathcal{X}) := \{ f \in L_0(\mu, \mathcal{X}) : | f | \in E \}.$$

For measurable section $f \in L_0(\Omega, \Sigma, \mu, \mathcal{X})$ by $\operatorname{supp}(f)$ we denote the measurable set $\{t \in \Omega : f(t) \neq 0\}$. Let \mathcal{X} be a measurable bundle of Banach

spaces over Ω . The measurable bundle of Banach spaces \mathcal{X}_0 over Ω is called a measurable subbundle of \mathcal{X} , if an every fiber $\mathcal{X}_0(t)$ is a Banach subspace of the $\mathcal{X}(t)$ for every $t \in \Omega$ and $L_0(\mu, \mathcal{X}_0) = L_0(\mu, \mathcal{X}) \cap M(\Omega, \mathcal{X})$.

Let \mathcal{X} be a measurable bundle of Banach spaces over Ω . Since the measure μ is σ -finite we can consider a fixed lifting $\rho: L_{\infty}(\mu) \to \mathcal{L}_{\infty}(\mu)$.

Definition 4. A mapping $\rho_{\mathcal{X}}: L_{\infty}(\mu, \mathcal{X}) \to \mathcal{L}_{\infty}(\mu, \mathcal{X})$ is called a lifting of $L_{\infty}(\mu, \mathcal{X})$ associated with ρ if, for all $u, v \in L_{\infty}(\mu, \mathcal{X})$ and $e \in L_{\infty}(\mu)$, the following hold:

- (1) $\rho_{\mathcal{X}}(u) \in u$ and $\operatorname{dom} \rho_{\mathcal{X}}(u) = \Omega$;
- (2) $\left| \rho_{\mathcal{X}}(u) \right| = \rho(\left| u \right|);$
- (3) $\rho_{\mathcal{X}}(u+v) = \rho_{\mathcal{X}}(u) + \rho_{\mathcal{X}}(v);$
- (4) $\left| \rho_{\mathcal{X}}(u) \right| = \rho_{\mathcal{X}}(\left| u \right|) \Omega;$
- (5) $\left| \rho_{\mathcal{X}}(eu) \right| = \rho(e)\rho(\left| u \right|);$
- (6) $\{\rho_{\mathcal{X}}(u): u \in L_{\infty}(\Omega, \mathcal{X})\}\$ is fiberwise dense in \mathcal{X} .

We say that X is a *liftable* bundle of Banach spaces provided that there exists a lifting of $L_{\infty}(\mu)$ and a lifting of $L_{\infty}(\mu, \mathcal{X})$ associated with it. We refer a reader to [5, 13] for the detailed discussion of liftable bundles of Banach spaces and their connections with the theory of lattice-normed spaces.

Let X be a Banach space. Recall that a Markushevich basis (shortly Mbasis) of X is a family $(x_i, x_i^*)_{i \in I}$, where $x_i \in X$ and $x_i^* \in X^*$, such that:

- 1) $x_i(x_i^*) = \delta_{ij}$ (the Kronecker symbol) for every $i, j \in I$;
- 2) $X = \operatorname{span}\{x_i : i \in I\};$
- 3) $\{x_i^*: i \in I\}$ separates the points of X (i.e. for each $x \in X \setminus \{0\}$ there is $i \in I$ such that $x_i^*(x) \neq 0$.

It is well known that every separable Banach space has an M-basis, see [6]. More generally, every weakly compactly generated Banach space has an M-basis, see ([6], Cor. 5.2). For complete information on this topic, we refer the reader to [6].

Let E be a Köthe function space over finite measure space. It is well known that linear continuous operator in E is a multiplication operator if and only if it commutes with all multiplication operators in E ([11], Prop. 2.2). More precisely:

Corollary 5. A linear continuous operator $T: E \to E$ is a multiplication operator if and only if T(gf) = gT(f) for all $g \in L_{\infty}(\mu)$ and $f \in E$.

3. Result

For the rest of the paper, (Ω, Σ, μ) is assumed to be a finite measure space, E is a order continuous Köthe function space over (Ω, Σ, μ) . At first we introduce the kind of measurable bundles of Banach spaces, which we need. Liftable measurable bundle of Banach spaces \mathcal{X} over (Ω, Σ, μ) is said to have a *Generalized M-basis* or GM-basis for short if there is a family $(\varphi_i, \varphi_i^*)_{i \in I}$ measurable section, where $\varphi_i \in L_{\infty}(\mu, \mathcal{X})$ and $\varphi_i^* \in L_{\infty}(\mu, \mathcal{X}^*)$, such that

- (i) $\langle \varphi_i^{\star} \varphi_j \rangle = \delta_{ij} \chi_{\Omega};$
- (ii) for every order ideal E of $L_0(\mu)$ there exists order dense subspace E_0 of E such that $||f(\cdot) \theta_k(\cdot)||_{\mathcal{X}(\cdot)} \to 0$ a.e. as $n \to \infty$ for every stepsection $f \in E(\mathcal{X})$; where $\theta_k = \sum_{i=1}^{n(k)} h_i^k(\cdot) \varphi_i^k(\cdot), \varphi_i^k$ are elements of GMbasis, $h_i^k \in E_0$ for every $k \in N, 1 \le i \le n(k)$;
- (iii) for every measurable section $f \in L_0(\mathcal{X})$, $\mu(\operatorname{supp}(f)) > 0$ there exist $\varphi_{i_0}^*$ and measurable set $A \subset \operatorname{supp}(f)$, $\mu(A) > 0$ so that $g(\omega) := \langle \varphi_{i_0}^*, f \rangle(\omega) > 0$ for every $\omega \in A$.

Corollary 6. Suppose liftable measurable bundles of Banach spaces \mathcal{X} has an GM-basis $(\varphi_i, \varphi_i^*)_{i \in I}$. Let $T : E(\mathcal{X}) \to E(\mathcal{X})$ be operator satisfying

$$T(g\langle f, \varphi_j^{\star} \rangle \varphi_i) = g(\langle T(f), \varphi_j^{\star} \rangle \varphi_i) \tag{1}$$

for every $g \in L_{\infty}(\mu)$, $f \in E(\mathcal{X})$ and $i, j \in I$. Then there is $g_0 \in L_{\infty}(\mu)$ such that $T(f) = g_0 f$ for every measurable section $f \in E(\mathcal{X})$.

Proof. We first notice that

$$\langle T(h\varphi_i), \varphi_j^{\star} \rangle = 0; \ i \neq j, h \in E.$$
 (2)

Indeed, (3.1) applied to $f := h\varphi_i \in E(\mathcal{X})$ and $g := \chi_{\Omega} \in L_{\infty}(\mu)$ yields

$$\langle T(h\varphi_i), \varphi_i^{\star} \rangle \varphi_i = T(\langle h\varphi_i, \varphi_i^{\star} \rangle \varphi_i) = T(0) = 0,$$

and because $\operatorname{supp}(\varphi_i) = \Omega$ we have $\langle T(h\varphi_i), \varphi_j^* \rangle = 0$. For each $i \in I$ we define $S_i^T : E \to E$ by

$$S_i^T(h) := \langle T(h\varphi_i), \varphi_i^* \rangle.$$

The mapping S_i^T is a linear continuous operator for every $i \in I$, because

$$||S_i^T h||_{E(\mathcal{X})} = ||\langle T(h\varphi_i), \varphi_i^{\star} \rangle||_E \le ||\varphi_i^{\star}||_{L_{\infty}(\mathcal{X})} ||T(h\varphi_i)||_{E(\mathcal{X})}$$

$$\leq \|\varphi_i^{\star}\|_{L_{\infty}(\mathcal{X})} \|T\| \|h\varphi_i\|_{E(\mathcal{X})} \leq K_i \|h\|_E$$

for all $h \in E$, where $K_i := \|\varphi_i^{\star}\|_{L_{\infty}(\mathcal{X})} \|T\| \|\varphi_i^{\star}\|_{L_{\infty}(\mathcal{X}^{\star})}$. We observe that each S_i^T satisfies

$$S_i^T(gh) = gS_i^T(h)$$
, for every $g \in L_\infty(\mu)$, $h \in E$. (3)

Indeed, (3.1) with i = j applied to $f := h\varphi_i \in E(\mathcal{X})$ yields

$$T(gh\varphi_i) = T(g\langle h\varphi_i, \varphi_i^{\star}\rangle\varphi_i) = g\langle T(h\varphi_i), \varphi_i^{\star}\rangle\varphi_i,$$

hence

$$S_i^T(gh) = \langle T(gh\varphi_i), \varphi_i^{\star} \rangle = \langle (g\langle T(h\varphi_i), \varphi_i^{\star} \rangle \varphi_i), \varphi_i^{\star} \rangle$$
$$= g\langle T(h\varphi_i), \varphi_i^{\star} \rangle = gS_i^T(h).$$

For each $i \in I$ equality (3.3) allows us to apply Corollary 5 to find $g_i \in L_{\infty}(\mu)$ such that

$$\langle T(h\varphi_i, \varphi_i^*) \rangle = S_i^T(h) = g_i h, \text{ for every } h \in E.$$
 (4)

We claim that $g_i = g_j$ for every $i, j \in I$. Indeed, fix $i \neq j$ and consider the measurable section $f := \varphi_i + \varphi_j \in E(\mathcal{X})$. By (3.3), (3.2) and (3.1) (with $g := \chi_{\Omega} \in L_{\infty}(\mu)$ and $h := \chi_{\Omega} \in E$) we have

$$g_i \varphi_i = \langle T(\varphi_i), \varphi_i^* \rangle \varphi_i = \langle T(\varphi_i), \varphi_i^* \rangle \varphi_i + \langle T(\varphi_j), \varphi_i^* \rangle \varphi_i$$
$$= \langle T(f), \varphi_i^* \rangle \varphi_j = T(\langle f, \varphi_i^* \rangle \varphi_j) = T(\varphi_j),$$

and similarly, we also have

$$g_j \varphi_i = \langle T(\varphi_j), \varphi_j^* \rangle \varphi_i = \langle T(\varphi_j), \varphi_j^* \rangle \varphi_i + \langle T(\varphi_i), \varphi_j^* \rangle \varphi_i$$
$$= \langle T(f), \varphi_j^* \rangle \varphi_i = T(\langle f, \varphi_j^* \rangle \varphi_i) = T(\varphi_i).$$

Hence $g_i\varphi_i=g_j\varphi_i$ and because $\operatorname{supp}(\varphi_i)=\Omega$, we have $g_i=g_j$. Therefore, there is $g_0\in L_\infty(\mu)$ such that

$$\langle T(h\varphi_i), \varphi_i^{\star} \rangle = g_0 h, \text{ for every } h \in E, i \in I.$$
 (5)

Let f be a step-section and $f \in E(\mathcal{X})$. To this end, fix $\varepsilon > 0$. We will prove that $T(f) = g_0 f$. Using conditions (ii) we have

$$||f(\cdot) - \sum_{i=1}^{n(k)} h_i^k(\cdot)\varphi_i^k(\cdot)||_{\mathcal{X}(\cdot)} \to 0, \quad \mu - \text{a.e.}, \quad k \to \infty.$$

Set

$$f_0 := \sum_{i=1}^{n(k)} h_i^k \varphi_i^k$$
, and $f_1 := g_0 f_0 = \sum_{i=1}^{n(k)} g_0 h_i^k \varphi_i^k \in E(\mathcal{X})$.

For each $i \in I$ equalities (3.2) and (3.5) yield

$$\langle T(f_0), \varphi_j^{\star} \rangle = \sum_{i=1}^{n(k)} \langle T(h_i^k \varphi_i^k), \varphi_j^{\star} \rangle = \sum_{i=1}^{n(k)} \delta_{i,j} g_0 h = \langle f_1, \varphi_j^{\star} \rangle, \text{ for every } j \in I,$$

and using (iii) we have $T(f_0) = f_1 = g_0 f_0$. Therefore,

$$||T(f) - g_0 f||_{E(\mathcal{X})} = ||T(f) - Tf_0 + g_0 f_0 - g_0 f||_{E(\mathcal{X})}$$

$$\leq ||T(f) - T(f_0)||_{E(\mathcal{X})} + ||g_0 f_0 - g_0 f||_{E(\mathcal{X})}$$

$$\leq ||T||||f - f_0||_{E(\mathcal{X})} + ||g_0||_{E}||f_0 - f||_{E(\mathcal{X})}$$

$$= ||T||(||||f(\cdot) - f_0(\cdot)||_{\mathcal{X}(\cdot)}||_{E}) + ||g_0||_{E}(||||f(\cdot) - f_0(\cdot)||_{\mathcal{X}(\cdot)}||_{E})$$

$$= ||T||(||||f(\cdot) - \sum_{i=1}^{n(k)} h_i^k(\cdot)\varphi_i^k(\cdot)||_{\mathcal{X}(\cdot)}||_{E})$$

$$+ ||g_0||_{E}(||||f(\cdot) - \sum_{i=1}^{n(k)} h_i^k(\cdot)\varphi_i^k(\cdot))||_{\mathcal{X}(\cdot)}||_{E}).$$

Using fact that E is a order continuous we can find $k \in N$ such that

$$\|\|f(\cdot) - \sum_{i=1}^{n(k)} h_i^k(\cdot)\varphi_i^k(\cdot))\|_{\mathcal{X}(\cdot)}\|_E < \varepsilon,$$

and finally we have

$$||T(f) - g_0 f||_{E(\mathcal{X})} \le C\varepsilon$$

where $C := (\|T\| + \|g_0\|_E)$. It follows at once that $T(f) = g_0 f$ for every $f \in S(\mathcal{X})$. In addition $S(\mathcal{X})$ is dense in $E(\mathcal{X})$ with respect the norm $\|\cdot\|_{E(\mathcal{X})}$ and so the equality $T(f) = g_0 f$ holds for every $f \in E(\mathcal{X})$, because both T and $M_{g_0} : E(\mathcal{X}) \to E(\mathcal{X})$ are continuous operators.

Now we need the following corollary.

Corollary 7. Let \mathcal{X} be liftable measurable bundles of Banach spaces, $T: E(\mathcal{X}) \to E(\mathcal{X})$ a linear continuous operator satisfying

$$T(g, \langle f, \phi^* \rangle \phi) = g(\langle T(f), \phi^* \rangle \phi) \tag{6}$$

for every $g \in L_{\infty}(\mu)$, $f \in E(\mathcal{X})$, $\phi \in L_{\infty}(\mu, \mathcal{X})$ and $\phi^* \in L_{\infty}(\mu, \mathcal{X}^*)$. Let \mathcal{Y} be an measurable subbundle of \mathcal{X} . Then T maps $E(\mathcal{Y})$ into itself.

Proof. Fix $f \in E(\mathcal{Y})$ of the form $f = h\psi$ for some $h \in E$ and $\psi \in L_{\infty}(\mu, \mathcal{Y})$, supp $(\psi) = \Omega$. Then there exists $\psi^* \in L_{\infty}(\mu, \mathcal{X}^*)$ such that $\langle \psi(\cdot), \psi^*(\cdot) \rangle = \chi_{\Omega}$. By applying (3.6) with $g := \chi_{\Omega}$ and $f = \psi$ we get

$$T(f) = T(\langle h\psi, \psi^* \rangle \psi) = T(\langle f, \psi^* \rangle \psi) = (\langle T(f), \psi^* \rangle \psi) \in E(\mathcal{Y}).$$

Let (Ω, Σ, μ) be a finite measure space and \mathcal{X} a liftable measurable bundle of Banach spaces over Ω . \mathcal{X} is said to have R-property if for every measurable sections $f, g \in L_0(\mu, \mathcal{X})$ there exists a measurable subbundle $\mathcal{Y}_{f,g}$ of \mathcal{X} such that $f(t), g(t) \in \mathcal{Y}_{f,g}(t)$ for almost every all $t \in \Omega$ and $\mathcal{Y}_{f,g}$ has a GM-basis.

Now we can prove the main result.

Theorem 8. Let \mathcal{X} be liftable measurable bundle of Banach spaces and \mathcal{X} has a R-property. Let $T: E(\mathcal{X}) \to E(\mathcal{X})$ be a linear continuous operator. The following statements are equivalent:

- 1) T is a multiplication operator, that is, there is $g_0 \in L_{\infty}(\mu)$ such that $T(f) = g_0 f$ for all $f \in E(\mathcal{X})$;
- 2) The equality $T(g\langle f, \varphi^*\rangle\varphi) = g(\langle T(f), \varphi^*\rangle\varphi)$ holds for every $g \in L_{\infty}(\mu)$, $f \in E(\mathcal{X}), \varphi \in L_{\infty}(\mu, \mathcal{X})$ and $\varphi^* \in L_{\infty}(\mu, \mathcal{X}^*)$.

Proof. 1) \Rightarrow 2) is straightforward. 2) \Rightarrow 1). Fix $\psi \in L_{\infty}(\mu, \mathcal{X})$, supp $(\psi) = \Omega$ and $\psi^{\star} \in L_{\infty}(\mu, \mathcal{X}^{\star})$ with $\langle \psi, \psi^{\star} \rangle = \chi_{\Omega}$. As in the proof of Corollary 6, we can define an operator

$$S^T: E \to E; \ S^T(h) := \langle T(h\psi), \psi^* \rangle$$

which satisfies

$$S^{T}(gh) = gS^{T}(h)$$
; for every $g \in L_{\infty}(\mu)$, $h \in E$.

By Corollary 5 there the exists $g_0 \in L_{\infty}(\mu)$ such that

$$\langle T(h\psi), \psi^* \rangle = S^T(h) = g_0 h.$$
 (7)

We claim that $T(f) = g_0 f$ for all $f \in E(\mathcal{X})$. Indeed, take any $f \in E(\mathcal{X})$. Since \mathcal{X} has the R-property, there is a measurable subbundle $\mathcal{Y}_{f,\psi}$ of X such that $f(t), \psi(t) \in \mathcal{Y}_{f,\psi}(t)$ for almost every all $t \in \Omega$ and $\mathcal{Y}_{f,\psi}$ has a GM-basis. By Corollary 7 we have $T(E(\mathcal{Y}_{f,\psi})) \subset E(\mathcal{Y}_{f,\psi})$. Clearly,

$$T|_{E(\mathcal{Y}_{f,\psi})}(g\langle f_1, \varphi^*\rangle\varphi) = g\langle T|_{E(\mathcal{Y}_{f,\psi})}(f_1), \varphi^*\rangle\varphi$$

for every $g \in L_{\infty}(\mu)$, $f_1 \in E(\mathcal{Y}_{f,\psi})$, $\varphi^* \in L_{\infty}(\mu, \mathcal{X}^*)$, $\varphi \in L_{\infty}(\mu, \mathcal{Y}_{f,\psi})$. Corollary 6 applied to $T|_{E(\mathcal{Y}_{f,\psi})}$ ensures the existence of $g \in L_{\infty}(\mu)$ so that

$$T(f_1) = gf_1; f_1 \in E(\mathcal{Y}_{f,\psi}).$$

Since both ψ and f belong to $E(\mathcal{Y}_{f,\psi})$, we have $T(\psi) = g\psi$ and T(f) = gf. On the other hand, (3.7) applied to $h := \chi_{\Omega} \in E$ yields

$$g_0 = \langle T(\psi), \psi^* \rangle = \langle g\psi, \psi^* \rangle = g,$$

and so $T(f) = g_0 f$, as claimed.

Notice that the particular case of Theorem 8 for a constant Banach bundle X was proved in ([3], Th. 1.4).

Acknowledgments. The research was supported by the Russian Foundation for Basic Research (Grant Number 17-51-12064).

References

- [1] N. Abasov, A.M. Megahed, M. Pliev, Dominated operators from lattice-normed spaces to sequence Banach lattices, *Annals of Functional Analysis*, **7**, No 4 (2016), 646-655.
- [2] C.D. Aliprantis, O. Burkinshaw, *Positive Operators*, Springer, Dordrecht (2006).
- [3] J.M. Calabuig, J. Rogriges, E.A. Sanchez-Perez, Multiplication operators in Köthe-Bochner spaces, J. Math. Anal. Appl., **373** (2011), 316-321.
- [4] B. De Pagter, W.J. Ricker, Algebras of multiplication operators in Banach function spaces, *J. Operator Theory*, **42**, No 2 (1999), 245-267.

[5] A.E. Gutman, Banach bundles in the theory of lattice-normed spaces, In: *Linear Operators Compatible with Order*, Sobolev Institute Press, Novosibirsk (1995), 63-211.

- [6] P. Hajek, V. Montesinos Santalucia, J. Vanderwerff, V. Zizler, *Biorthogonal Systems in Banach Spaces*, Springer, New York (2008).
- [7] V. Orlov, M. Pliev, D. Rode, Domination problem for AM-compact abstract Uryson operators, Archiv der Math., 107, No 5 (2016), 543-552.
- [8] M. Pliev, Narrow operators on lattice-normed spaces, *Open Math.*, **9**, No 6 (2011), 1276-1287.
- [9] M. Pliev, M. Popov, On extension of abstract Urysohn operators, *Siberian Math. J.*, **57**, No 3 (2016), 552-557.
- [10] M.A. Pliev, M.R. Weber, Disjointness and order projections in the vector lattices of abstract Uryson operators, *Positivity*, **20**, No 3 (2016), 695-707.
- [11] M. Pliev, K. Ramdane, Order unbounded orthogonally additive operators in vector lattices, *Mediterranean J. of Math.*, **15**, No 2 (2018), 1-19.
- [12] M. Pliev, X. Fang, Narrow orthogally additive operators in lattice-normed spaces, *Siberian Math. J.*, **58**, No 1 (2017), 134-141.
- [13] A.G. Kusraev, Dominated Operators, Springer, Dordrecht (2000).