In this paper a complete intersection Calabi-Yau 10-folds are considered. Their Hodge diamond, Todd classes and Chern characters for sheaves of differential -forms are calculated.
[3] F. Hirzebruch, Topological Methods in Algebraic Geometry, SpringerVerlag, NY (1978).
[4] J.A. Todd, The arithmetical invariants of algebraic loci, Proc. London Math. Soc., s-2 43, No 2178 (1938), 190-225.
[5] O. Debarre, Cohomological characterizations of the complex projective space, arXiv: 1512.04321.
[6] T. H¨ubsch, Calabi-Yau Manifolds. A Bestiaray for Physicist, World Sci. Publ., Singapore (1994).
[7] J. Gray, A. Haupt, A. Lukas, All complete intersection Calabi-Yau four-folds, J. High Energy Phys., 1307 (2013), arXiv: 1303.1832; doi: 10.1007/JHEP07(2013)070.
[8] A. Haupt, A. Lukas, K. Stelle, M-theory on Calabi-Yau five-folds, J. High Energy Phys., 05 (2009), arXiv: 0810.2685; doi: 10.1088/11266708/2009/05/069.
[9] V.N. Dumachev, Seven folds of complete intersection Calabi-Yau, International J. of Pure and Applied Math., 116, No 4 (2017), 959-965; doi: 10.12732/ijpam.v116i4.12.
[10] V.N. Dumachev, Eight-folds of complete intersection Calabi-Yau, Communications in Appl. Anal., 22, No 3 (2018), 447-457; doi: 10.12732/caa.v22i3.7.
[11] V.N. Dumachev, Complete intersection Calabi-Yau nine-folds, International Journal of Applied Mathematics, 31, No 6 (2018), 853-869; DOI: 10.12732/ijam.v31i6.13.