ON THE MULTIPLE SOLUTIONS OF A NONHOMOGENEOUS
STURM-LIOUVILLE EQUATION WITH NONLOCAL
BOUNDARY CONDITIONS
A.M.A. El-Sayed1, M.Sh. Mohamed2, R.E.M. Embia3 1,2Faculty of Science
Alexandria University
Alexandria, EGYPT 3Faculty of Science
Benghazi University
Al-marj, LIBYA
In this work, we are concerned with a nonlocal boundary value problem of nonhomogeneous Sturm-Liouville equation. Then existence of at least one solution will be proved. The spectral properties of the problem will be studied. The multiple solutions of the nonhomogeneous equation with the nonlocal boundary condition will be given.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] A.V. Bitsadze, A.A. Samarskii, Some elementary generalizations of linear elliptic boundary value problems, Dokl. Akad. Nauk SSSR, 185 (1969), 739-740.
[2] A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Dover Publ. Inc. (1975).
[3] A. Skucaite, A. Stikonas, Spectrum curves for Sturm-Liouville problem with integral boundary condition, Math. Model. Anal., 20, No 6 (2015), 802-818.
[4] A. Skucaite, K. Skucaite-Bingele, S. Peciulyte, A. Stikonas, Investigation of the spectrum for the Sturm-Liouville problem with one integral boundary Condition, Nonlinear Anal. Model. Control, 15, No 4 (2010), 501-512.
[5] A. Skucaite, A. Stikonas, Zeroes and poles of a characteristic function for Sturm-Liouville problem with nonlocal integral condition, Liet. matem. rink., Proc. LMS, Ser. A, 56 (2015), 95-100.
[6] A. Skucaite, A. Stikonas, Investigation of the spectrum of the Sturm-Liouville problem with a nonlocal integral condition, Liet. matem. rink. Proc. LMS, Ser. A, 54 (2013), 67-72.
[7] A. Skucaite and A. Stikonas, Investigation of the Sturm-Liouville problems with integral boundary condition. Liet. matem. rink. Proc. LMS, Ser. A, 52 (2011), 297-302.